# Two Polarization Comb Dynamics in VCSELs Subject to Optical Injection

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental Polarization Dynamics

#### 2.1. Experimental Setup

#### 2.2. Impact of the Injected Comb Spacing

#### 2.3. Influence of the Injection Current

#### 2.4. Tailoring Comb Properties

## 3. Theoretical Bifurcation Analysis

#### 3.1. Y-PM Comb Dynamics

#### 3.2. Influence of Spin-Flip Relaxation Rate

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Sciamanna, M.; Shore, K.A. Physics and applications of laser diode chaos. Nat. Photonics
**2015**, 9, 151–162. [Google Scholar] [CrossRef][Green Version] - Wieczorek, S.; Krauskopf, B.; Simpson, T.B.; Lenstra, D. The dynamical complexity of optically injected semiconductor lasers. Phys. Rep.
**2005**, 416, 1–128. [Google Scholar] [CrossRef] - Mogensen, F.; Olesen, H.; Jacobsen, G. Locking conditions and stability properties for a semiconductor laser with external light injection. IEEE J. Quantum Electron.
**1985**, 21, 784–793. [Google Scholar] [CrossRef] - Larsson, A. Advances in VCSELs for Communication and Sensing. IEEE J. Sel. Top. Quantum Electron.
**2011**, 17, 1552–1567. [Google Scholar] [CrossRef] - Sciamanna, M.; Panajotov, K.; Thienpont, H.; Veretennicoff, I.; Mégret, P.; Blondel, M. Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers. Opt. Lett.
**2003**, 28, 1543–1545. [Google Scholar] [CrossRef] [PubMed] - Sciamanna, M.; Panajotov, K. Route to polarization switching induced by optical injection in vertical-cavity surface-emitting lasers. Phys. Rev. A
**2006**, 73, 023811. [Google Scholar] [CrossRef] - Altés, J.B.; Gatare, I.; Panajotov, K.; Thienpont, H.; Sciamanna, M. Mapping of the dynamics induced by orthogonal optical injection in vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron.
**2006**, 42, 198–207. [Google Scholar] - Choquette, K.D.; Schneider, R.P.; Lear, K.L.; Leibenguth, R.E. Gain-dependent polarization properties of vertical-cavity lasers. IEEE J. Sel. Top. Quantum Electron.
**1995**, 1, 661–666. [Google Scholar] [CrossRef][Green Version] - Hurtado, A.; Quirce, A.; Valle, A.; Pesquera, L.; Adams, M.J. Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm vertical-cavity surface-emitting lasers (VCSELs). Opt. Express
**2010**, 18, 9423–9428. [Google Scholar] [CrossRef] [PubMed][Green Version] - Gatare, I.; Buesa, J.; Thienpont, H.; Panajotov, K.; Sciamanna, M. Polarization switching bistability and dynamics in vertical-cavity surface-emitting laser under orthogonal optical injection. Opt. Quantum Electron.
**2006**, 38, 429–443. [Google Scholar] [CrossRef] - Virte, M.; Panajotov, K.; Thienpont, H.; Sciamanna, M. Deterministic polarization chaos from a laser diode. Nat. Photonics
**2013**, 7, 60–65. [Google Scholar] [CrossRef][Green Version] - Quirce, A.; de Dios, C.; Valle, A.; Acedo, P. VCSEL-based optical frequency combs expansion induced by polarized optical injection. IEEE J. Sel. Top. Quantum Electron.
**2018**, 25, 1–9. [Google Scholar] [CrossRef] - Minoshima, K.; Matsumoto, H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt.
**2000**, 39, 5512–5517. [Google Scholar] [CrossRef] [PubMed] - Link, S.M.; Maas, D.; Waldburger, D.; Keller, U. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser. Science
**2017**, 356, 1164–1168. [Google Scholar] [CrossRef] [PubMed][Green Version] - Marin-Palomo, P.; Kemal, J.N.; Karpov, M.; Kordts, A.; Pfeifle, J.; Pfeiffer, M.H.; Trocha, P.; Wolf, S.; Brasch, V.; Anderson, M.H.; et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature
**2017**, 546, 274–279. [Google Scholar] [CrossRef] [PubMed][Green Version] - Hargrove, L.; Fork, R.L.; Pollack, M. Locking of He–Ne laser modes induced by synchronous intracavity modulation. Appl. Phys. Lett.
**1964**, 5, 4–5. [Google Scholar] [CrossRef] - Del’Haye, P.; Schliesser, A.; Arcizet, O.; Wilken, T.; Holzwarth, R.; Kippenberg, T.J. Optical frequency comb generation from a monolithic microresonator. Nature
**2007**, 450, 1214–1217. [Google Scholar] [CrossRef][Green Version] - Tilma, B.W.; Mangold, M.; Zaugg, C.A.; Link, S.M.; Waldburger, D.; Klenner, A.; Mayer, A.S.; Gini, E.; Golling, M.; Keller, U. Recent advances in ultrafast semiconductor disk lasers. Light. Sci. Appl.
**2015**, 4, e310. [Google Scholar] [CrossRef][Green Version] - Hugi, A.; Villares, G.; Blaser, S.; Liu, H.; Faist, J. Mid-infrared frequency comb based on a quantum cascade laser. Nature
**2012**, 492, 229–233. [Google Scholar] [CrossRef] - Silvestri, C.; Columbo, L.L.; Brambilla, M.; Gioannini, M. Coherent multi-mode dynamics in a quantum cascade laser: Amplitude-and frequency-modulated optical frequency combs. Opt. Express
**2020**, 28, 23846–23861. [Google Scholar] [CrossRef] [PubMed] - Weber, C.; Columbo, L.L.; Gioannini, M.; Breuer, S.; Bardella, P. Threshold behavior of optical frequency comb self-generation in an InAs/InGaAs quantum dot laser. Opt. Lett.
**2019**, 44, 3478–3481. [Google Scholar] [CrossRef] [PubMed] - Grillot, F.; Duan, J.; Dong, B.; Huang, H. Uncovering recent progress in nanostructured light-emitters for information and communication technologies. Light. Sci. Appl.
**2021**, 10, 156. [Google Scholar] [CrossRef] [PubMed] - Villares, G.; Hugi, A.; Blaser, S.; Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun.
**2014**, 5, 5192. [Google Scholar] [CrossRef] [PubMed] - Shortiss, K.; Lingnau, B.; Dubois, F.; Kelleher, B.; Peters, F.H. Harmonic frequency locking and tuning of comb frequency spacing through optical injection. Opt. Express
**2019**, 27, 36976–36989. [Google Scholar] [CrossRef][Green Version] - Lingnau, B.; Shortiss, K.; Dubois, F.; Peters, F.H.; Kelleher, B. Universal generation of devil’s staircases near Hopf bifurcations via modulated forcing of nonlinear systems. Phys. Rev. E
**2020**, 102, 030201. [Google Scholar] [CrossRef] [PubMed] - Doumbia, Y.; Malica, T.; Wolfersberger, D.; Panajotov, K.; Sciamanna, M. Nonlinear dynamics of a laser diode with an injection of an optical frequency comb. Opt. Express
**2020**, 28, 30379–30390. [Google Scholar] [CrossRef] - Doumbia, Y.; Malica, T.; Wolfersberger, D.; Panajotov, K.; Sciamanna, M. Optical injection dynamics of frequency combs. Opt. Lett.
**2020**, 45, 435–438. [Google Scholar] [CrossRef] - Doumbia, Y.; Wolfersberger, D.; Panajotov, K.; Sciamanna, M. Tailoring frequency combs through VCSEL polarization dynamics. Opt. Express
**2021**, 29, 33976–33991. [Google Scholar] [CrossRef] - Gatare, I.; Sciamanna, M.; Nizette, M.; Panajotov, K. Bifurcation to polarization switching and locking in vertical-cavity surface-emitting lasers with optical injection. Phys. Rev. A
**2007**, 76, 031803. [Google Scholar] [CrossRef] - Gatare, I.; Sciamanna, M.; Buesa, J.; Thienpont, H.; Panajotov, K. Nonlinear dynamics accompanying polarization switching in vertical-cavity surface-emitting lasers with orthogonal optical injection. Appl. Phys. Lett.
**2006**, 88, 101106. [Google Scholar] [CrossRef] - Valle, A.; Gatare, I.; Panajotov, K.; Sciamanna, M. Transverse mode switching and locking in vertical-cavity surface-emitting lasers subject to orthogonal optical injection. IEEE J. Quantum Electron.
**2007**, 43, 322–333. [Google Scholar] [CrossRef][Green Version] - Panajotov, K.; Gatare, I.; Valle, A.; Thienpont, H.; Sciamanna, M. Polarization-and transverse-mode dynamics in optically injected and gain-switched vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron.
**2009**, 45, 1473–1481. [Google Scholar] [CrossRef] - Gatare, I.; Panajotov, K.; Sciamanna, M. Frequency-induced polarization bistability in vertical-cavity surface-emitting lasers with orthogonal optical injection. Phys. Rev. A
**2007**, 75, 023804. [Google Scholar] [CrossRef] - Nizette, M.; Sciamanna, M.; Gatare, I.; Thienpont, H.; Panajotov, K. Dynamics of vertical-cavity surface-emitting lasers with optical injection: A two-mode model approach. JOSA B
**2009**, 26, 1603–1613. [Google Scholar] [CrossRef] - Sciamanna, M.; Panajotov, K. Two-mode injection locking in vertical-cavity surface-emitting lasers. Opt. Lett.
**2005**, 30, 2903–2905. [Google Scholar] [CrossRef] [PubMed] - Hong, Y.; Spencer, P.S.; Rees, P.; Shore, K.A. Optical injection dynamics of two-mode vertical cavity surface-emitting semiconductor lasers. IEEE J. Quantum Electron.
**2002**, 38, 274–278. [Google Scholar] [CrossRef] - Denis-le Coarer, F.; Quirce, A.; Valle, Á.; Pesquera, L.; Sciamanna, M.; Thienpont, H.; Panajotov, K. Polarization dynamics induced by parallel optical injection in a single-mode VCSEL. Opt. Lett.
**2017**, 42, 2130–2133. [Google Scholar] [CrossRef] [PubMed] - Quirce, A.; Pérez, P.; Popp, A.; Valle, Á.; Pesquera, L.; Hong, Y.; Thienpont, H.; Panajotov, K. Polarization switching and injection locking in vertical-cavity surface-emitting lasers subject to parallel optical injection. Opt. Lett.
**2016**, 41, 2664–2667. [Google Scholar] [CrossRef][Green Version] - Quirce, A.; Popp, A.; Denis-le Coarer, F.; Pérez, P.; Valle, Á.; Pesquera, L.; Hong, Y.; Thienpont, H.; Panajotov, K.; Sciamanna, M. Analysis of the polarization of single-mode vertical-cavity surface-emitting lasers subject to parallel optical injection. JOSA B
**2017**, 34, 447–455. [Google Scholar] [CrossRef] - Denis-le Coarer, F.; Quirce, A.; Pérez, P.; Valle, A.; Pesquera, L.; Sciamanna, M.; Thienpont, H.; Panajotov, K. Injection locking and polarization switching bistability in a 1550 nm VCSEL subject to parallel optical injection. IEEE J. Sel. Top. Quantum Electron.
**2017**, 23, 1–10. [Google Scholar] [CrossRef] - Guckenheimer, J.; Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 42. [Google Scholar]
- San Miguel, M.; Feng, Q.; Moloney, J.V. Light-polarization dynamics in surface-emitting semiconductor lasers. Phys. Rev. A
**1995**, 52, 1728. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Setup for frequency comb injection into a single-mode VCSEL. TL: Tunable Laser, EDFA: amplifier, P.C: Polarization Controller, AWG: Arbitrary Waveform Generator, MZM: Mach–Zehnder Modulator, VOA: Variable Optical Attenuator, OSA: Optical Spectrum Analyser, PD: photodiode, ESA: Electrical spectrum analyzer. (

**b**–

**d**) correspond to the optical spectra of the injected comb for comb spacing of $\mathsf{\Omega}=1$ GHz, $\mathsf{\Omega}=2$ GHz and $\mathsf{\Omega}=4$ GHz, respectively. (

**e**) shows the optical spectrum of the VCSEL in free running.

**Figure 2.**Bifurcation scenarios resulting in the excitation of the depressed polarization mode. These optical spectra are obtained for detuning $\Delta \nu =1.6$ GHz and injected comb spacing $\mathsf{\Omega}=1$ GHz when increasing the injected power, ${P}_{inj}$. (

**a**) Stable output at ${P}_{inj}=3$ µW, (

**b**,

**c**) wave mixing at ${P}_{inj}=16$ µW and ${P}_{inj}=32$ µW, respectively, (

**d**) two polarization comb at ${P}_{inj}=48$ µW, (

**e**,

**f**) two polarization harmonics comb at ${P}_{inj}=80$ µW and ${P}_{inj}=96$ µW, respectively, (

**g**) two polarization complex dynamics at ${P}_{inj}=128$ µW and (

**h**,

**i**) X-polarization comb at ${P}_{inj}=144$ µW and ${P}_{inj}=240$ µW, respectively.

**Figure 3.**Polarization resolved-optical spectra corresponding to an example of two polarization comb dynamics similar to Figure 2d–f for detuning $\Delta \nu =1.6$ GHz and injected power ${P}_{inj}=20$ µW. (

**a**–

**c**) correspond to the optical spectra of Y-PM, X-PM and the superposition of Y-PM and X-PM, respectively.

**Figure 4.**Bifurcation scenarios resulting in the excitation of the depressed polarization mode. These optical spectra are obtained for detuning $\Delta \nu =1.6$ GHz and injected comb spacing $\mathsf{\Omega}=2$ GHz. (

**a**) Stable output at ${P}_{inj}=3$ µW, (

**b**) wave mixing at ${P}_{inj}=16$ µW, (

**c**) two polarizations comb at ${P}_{inj}=48$ µW, (

**d**) two polarization harmonics comb at ${P}_{inj}=112$ µW, (

**e**) two polarization complex dynamics at ${P}_{inj}=208$ µW and (

**f**) X-polarization comb at ${P}_{inj}=240$ µW.

**Figure 5.**Polarization resolved-optical spectra corresponding to an example of two polarization comb dynamics in Figure 4c. (

**a**–

**c**) are obtained for detuning $\Delta \nu =1.6$ GHz and injected power ${P}_{inj}=20$ µW. (

**a**–

**c**) correspond to the optical spectra of Y-PM, X-PM and the superposition of Y-PM and X-PM, respectively.

**Figure 6.**Bifurcation scenarios resulting in the excitation of the depressed polarization mode. These optical spectra are obtained for detuning $\Delta \nu =-0.9$ GHz and injected comb spacing $\mathsf{\Omega}=4$ GHz. (

**a**,

**b**) Wave mixing at ${P}_{inj}=3$ µW and ${P}_{inj}=32$ µW, respectively, (

**c**,

**d**) single polarization comb at ${P}_{inj}=48$ µW and ${P}_{inj}=228$ µW, respectively, (

**e**,

**h**,

**i**) two polarizations comb at ${P}_{inj}=304$ µW, ${P}_{inj}=560$ µW and ${P}_{inj}=704$ µW, respectively, (

**f**) two polarization harmonics comb at ${P}_{inj}=376$ µW and (

**g**) two polarization complex dynamics at ${P}_{inj}=448$ µW.

**Figure 7.**Polarization resolved-optical spectra corresponding to an example of two polarization comb dynamics in Figure 6e–i. (

**a**–

**c**) are obtained for detuning $\Delta \nu =-0.9$ GHz and injected power ${P}_{inj}=432.8$ µW. (

**a**–

**c**) correspond to the optical spectra of Y-PM, X-PM and the superposition of Y-PM and X-PM, respectively.

**Figure 8.**Control of comb properties using the injection parameters and polarization of the injected light. (

**a**,

**b**) are obtained for fixed detuning and comb spacing $\Delta \nu =1.6$ GHz and $\mathsf{\Omega}=2$ GHz, respectively. (

**c**,

**d**) are obtained for fixed comb spacing ($\mathsf{\Omega}=4$ GHz) and injection current $I=8$ mA. The blue and red curves correspond to the parallel and orthogonal optical injection, respectively. The comb dynamics in parallel and orthogonal optical injection are obtained for fixed detuning $\Delta \nu =-0.9$ GHz and $\Delta \nu =-11.6$ GHz, respectively.

**Figure 9.**Bifurcation diagrams for fixed injected comb spacing $\mathsf{\Omega}=2$ GHz and detuning $\Delta {\nu}_{x}=-9$ GHz. The left and right panels correspond to X-polarization mode (X-PM) and Y-polarization mode (Y-PM). (

**a**${}_{\mathbf{1}}$,

**b**${}_{\mathbf{1}}$), (

**a**${}_{\mathbf{2}}$,

**b**${}_{\mathbf{2}}$), (

**a**${}_{\mathbf{3}}$,

**b**${}_{\mathbf{3}}$) and (

**a**${}_{\mathbf{4}}$,

**b**${}_{\mathbf{4}}$) are obtained for ${\gamma}_{a}=-0.1$ ns${}^{-1}$, ${\gamma}_{a}=-0.2$ ns${}^{-1}$, ${\gamma}_{a}=-0.6$ ns${}^{-1}$ and ${\gamma}_{a}=-0.8$ ns${}^{-1}$.

**Figure 10.**Optical spectra for fixed $\mathsf{\Omega}=2$ GHz, $\Delta {\nu}_{x}=-9$ GHz and ${\gamma}_{a}=-0.6$ ns${}^{-1}$. The left (

**a**) and right (

**b**) panels correspond to X-PM and Y-PM, respectively. The top figures (

**a**${}_{\mathbf{1}}$,

**b**${}_{\mathbf{1}}$) are obtained for $\mathbf{\kappa}=\mathbf{0}.\mathbf{525}$ and the bottom figures (

**a**${}_{\mathbf{2}}$,

**b**${}_{\mathbf{2}}$) are obtained for $\mathbf{\kappa}=\mathbf{0}.\mathbf{6}$.

**Figure 11.**Bifurcation diagrams for fixed injected comb spacing $\mathsf{\Omega}=2$ GHz and ${\gamma}_{a}=-0.8$ ns${}^{-1}$. The left and right panels correspond to X-PM and Y-PM, respectively. (

**a**,

**b**) are obtained for $\mu =4.2$ and (

**c**,

**d**) for $\mu =5.29$.

**Figure 12.**Bifurcation diagrams for fixed injected comb spacing $\mathsf{\Omega}=2$ GHz and detuning $\Delta {\nu}_{x}=-9$ GHz when varying ${\gamma}_{s}$. (

**a**–

**d**) are obtained for ${\gamma}_{s}=50$ ns${}^{-1}$, ${\gamma}_{s}=200$ ns${}^{-1}$, ${\gamma}_{s}=1000$ ns${}^{-1}$ and ${\gamma}_{s}=2300$ ns${}^{-1}$, respectively.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Doumbia, Y.; Wolfersberger, D.; Panajotov, K.; Sciamanna, M.
Two Polarization Comb Dynamics in VCSELs Subject to Optical Injection. *Photonics* **2022**, *9*, 115.
https://doi.org/10.3390/photonics9020115

**AMA Style**

Doumbia Y, Wolfersberger D, Panajotov K, Sciamanna M.
Two Polarization Comb Dynamics in VCSELs Subject to Optical Injection. *Photonics*. 2022; 9(2):115.
https://doi.org/10.3390/photonics9020115

**Chicago/Turabian Style**

Doumbia, Yaya, Delphine Wolfersberger, Krassimir Panajotov, and Marc Sciamanna.
2022. "Two Polarization Comb Dynamics in VCSELs Subject to Optical Injection" *Photonics* 9, no. 2: 115.
https://doi.org/10.3390/photonics9020115