Swept-Source Optical Coherence Tomography-Based Biometry: A Comprehensive Overview
Abstract
:1. Introduction
2. Literature Search
3. Swept-Source Optical Coherence Tomography (SS-OCT)-Based Biometers
3.1. ANTERION
3.2. ARGOS
3.3. IOLMaster 700
3.4. OA-2000
4. Comparison and Agreement among Swept-Source OCT (SS-OCT) and Partial Coherence Interferometry (PCI) Biometers
4.1. ANTERION vs. IOLMaster 500
4.2. IOLMaster 700 vs. IOLMaster 500
4.3. OA-2000 vs. IOLMaster 500 in Healthy Eyes
4.4. OA-2000 vs. IOLMaster 500 vs. Lenstar LS 900 in Cataract Eyes
4.5. OA-2000 vs. IOLMaster 500 in Myopic Eyes with Posterior Staphyloma
5. Comparison and Agreement among Swept-Source OCT (SS-OCT) Biometers
5.1. ANTERION vs. IOLMaster 700
5.2. ANTERION vs. OA-2000
5.3. ARGOS vs. IOLMaster 700
5.4. IOLMaster 700 vs. OA-2000
5.5. Others
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clinical Advantages of Swept-Source OCT and New Non-Damaging Laser Treatments. 2014. Available online: https://www.reviewofophthalmology.com/publications/clinical-advantages-of-sweptsource-oct-and-new-nondamaging-laser-treatments (accessed on 7 December 2022).
- Ruíz-Mesa, R.; Aguilar-Córcoles, S.; Montés-Micó, R.; Tañá-Rivero, P. Ocular Biometric Repeatability Using a New High-Resolution Swept-Source Optical Coherence Tomographer. Expert Rev. Med. Devices 2020, 17, 591–597. [Google Scholar] [CrossRef]
- Shammas, H.J.; Ortiz, S.; Shammas, M.C.; Kim, S.H.; Chong, C. Biometry Measurements Using a New Large-Coherence-Length Swept-Source Optical Coherence Tomographer. J. Cataract Refract. Surg. 2016, 42, 50–56. [Google Scholar] [CrossRef]
- Nemeth, G.; Modis, L. Ocular Measurements of a Swept-Source Biometer: Repeatability Data and Comparison with an Opti-cal Low-Coherence Interferometry Biometer. J. Cataract Refract. Surg. 2019, 45, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, H.; Li, Y.; Chen, Z.; Gao, R.; Yu, J.; Zhao, Y.; Lu, W.; McAlinden, C.; Wang, Q. Comprehensive Comparison of Axial Length Measurement with Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry. J. Refract. Surg. 2019, 35, 115–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullimore, M.A.; Slade, S.; Yoo, P.; Otani, T. An Evaluation of the IOLMaster 700. Eye Contact Lens 2019, 45, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Akman, A.; Asena, L.; Güngör, S.G. Evaluation and Comparison of the New Swept Source OCT-Based IOLMaster 700 with the IOLMaster 500. Br. J. Ophthalmol. 2016, 100, 1201–1205. [Google Scholar] [CrossRef]
- Srivannaboon, S.; Chirapapaisan, C.; Chonpimai, P.; Loket, S. Clinical Comparison of a New Swept-Source Optical Coherence Tomography-Based Optical Biometer and a Time-Domain Optical Coherence Tomography-Based Optical Biometer. J. Cataract Refract. Surg. 2015, 41, 2224–2232. [Google Scholar] [CrossRef] [Green Version]
- Tognetto, D.; Pastore, M.R.; de Giacinto, C.; Merli, R.; Franzon, M.; D’Aloisio, R.; Belfanti, L.; Giglio, R.; Cirigliano, G. Swept-Source Optical Coherence Tomography Biometer as Screening Strategy for Macular Disease in Patients Scheduled for Cataract Surgery. Sci. Rep. 2019, 9, 9912. [Google Scholar] [CrossRef] [Green Version]
- Kunert, K.S.; Peter, M.; Blum, M.; Haigis, W.; Sekundo, W.; Schütze, J.; Büehren, T. Repeatability and Agreement in Optical Biometry of a New Swept-Source Optical Coherence Tomography-Based Biometer versus Partial Coherence Interferometry and Optical Low-Coherence Reflectometry. J. Cataract Refract. Surg. 2016, 42, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Kurian, M.; Negalur, N.; Das, S.; Puttaiah, N.K.; Haria, D.; Tejal, S.; Thakkar, M.M. Biometry with a New Swept-Source Op-tical Coherence Tomography Biometer: Repeatability and Agreement with an Optical Low-Coherence Reflectometry Device. J. Cataract Refract. Surg. 2016, 42, 577–581. [Google Scholar] [CrossRef]
- Kiraly, L.; Stange, J.; Kunert, K.S.; Sel, S. Repeatability and Agreement of Central Corneal Thickness and Keratometry Meas-urements between Four Different Devices. J. Ophthalmol. 2017, 2017, 6181405. [Google Scholar] [CrossRef] [PubMed]
- Shajari, M.; Cremonese, C.; Petermann, K.; Singh, P.; Müller, M.; Kohnen, T. Comparison of Axial Length, Corneal Curvature, and Anterior Chamber Depth Measurements of 2 Recently Introduced Devices to a Known Biometer. Am. J. Ophthalmol. 2017, 178, 58–64. [Google Scholar] [CrossRef]
- Sel, S.; Stange, J.; Kaiser, D.; Kiraly, L. Repeatability and Agreement of Scheimpflug-Based and Swept-Source Optical Biome-try Measurements. Contact Lens Anterior Eye 2017, 40, 318–322. [Google Scholar] [CrossRef]
- Jung, S.; Chin, H.S.; Kim, N.R.; Lee, K.W.; Jung, J.W. Comparison of Repeatability and Agreement between Swept-Source Opti-cal Biometry and Dual-Scheimpflug Topography. J. Ophthalmol. 2017, 2017, 1516395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrer-Blasco, T.; Domínguez-Vicent, A.; Esteve-Taboada, J.J.; Aloy, M.A.; Adsuara, J.E.; Montés-Micó, R. Evaluation of the Repeatability of a Swept-Source Ocular Biometer for Measuring Ocular Biometric Parameters. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 343–349. [Google Scholar] [CrossRef]
- Garza-Leon, M.; Fuentes-de la Fuente, H.A.; García-Treviño, A.V. Repeatability of Ocular Biometry with IOLMaster 700 in Subjects with Clear Lens. Int. Ophthalmol. 2017, 37, 1133–1138. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Li, Y.; Savini, G.; Song, B.; Hu, Q.; Wang, Q.; Bao, F.; Huang, J. Comparison of Anterior Segment Measurements Ob-tained Using a Swept-Source Optical Coherence Tomography Biometer and a Scheimpflug–Placido Tomographer. J. Cataract Refract. Surg. 2019, 45, 298–304. [Google Scholar] [CrossRef]
- Sabatino, F.; Matarazzo, F.; Findl, O.; Maurino, V. Comparative Analysis of 2 Swept-Source Optical Coherence Tomography Biometers. J. Cataract Refract. Surg. 2019, 45, 1124–1129. [Google Scholar] [CrossRef]
- Sikorski, B.L.; Suchon, P. OCT Biometry (B-OCT): A New Method for Measuring Ocular Axial Dimensions. J. Ophthalmol. 2019, 2019, 9192456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Albert, N.; Esteve-Taboada, J.J.; Montés-Micó, R.; Fernández-Vega-Cueto, L.; Ferrer-Blasco, T. Repeatability As-sessment of Biometric Measurements with Different Refractive States and Age Using a Swept-Source Biometer. Expert Rev. Med. Devices 2018, 16, 63–69. [Google Scholar] [CrossRef]
- Chan, T.C.Y.; Wan, K.H.; Tang, F.Y.; Wang, Y.M.; Yu, M.; Cheung, C. Repeatability and Agreement of a Swept-Source Optical Coherence Tomography-Based Biometer IOLMaster 700 Versus a Scheimpflug Imaging-Based Biometer AL-Scan in Cata-ract Patients. Eye Contact Lens 2020, 46, 35–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shajari, M.; Sonntag, R.; Ramsauer, M.; Kreutzer, T.; Vounotrypidis, E.; Kohnen, T.; Priglinger, S.; Mayer, W.J. Evaluation of Total Corneal Power Measurements with a New Optical Biometer. J. Cataract Refract. Surg. 2020, 46, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Miao, Y.; Savini, G.; McAlinden, C.; Chen, H.; Hu, Q.; Wang, Q.; Huang, J. Precision of a New Ocular Biometer in Eyes with Cataract Using Swept Source Optical Coherence Tomography Combined with Placido-Disk Corneal Topography. Sci. Rep. 2017, 7, 13736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OA-2000: Optical Biometer—TOMEY GmbH. Available online: https://www.tomey.de/products/oa-2000 (accessed on 4 November 2022).
- Goebels, S.; Pattmöller, M.; Eppig, T.; Cayless, A.; Seitz, B.; Langenbucher, A. Comparison of 3 Biometry Devices in Cataract Patients. J. Cataract Refract. Surg. 2015, 41, 2387–2393. [Google Scholar] [CrossRef]
- Montés-Micó, R.; Pastor-Pascual, F.; Ruiz-Mesa, R.; Tañá-Rivero, P. Ocular Biometry with Swept-Source Optical Coherence Tomography. J. Cataract Refract. Surg. 2021, 47, 802–814. [Google Scholar] [CrossRef]
- Hua, Y.; Stojanovic, A.; Utheim, T.P.; Chen, X.; Ræder, S.; Huang, J.; Wang, Q. Keratometric Index Obtained by Fouri-er-Domain Optical Coherence Tomography. PLoS ONE 2015, 10, e0122441. [Google Scholar] [CrossRef] [Green Version]
- Ho, J.-D.; Tsai, C.-Y.; Tsai, R.J.-F.; Kuo, L.-L.; Tsai, I.-L.; Liou, S.-W. Validity of the Keratometric Index: Evaluation by the Pen-tacam Rotating Scheimpflug Camera. J. Cataract Refract. Surg. 2008, 34, 137–145. [Google Scholar] [CrossRef]
- Huang, J.; Savini, G.; Hoffer, K.J.; Chen, H.; Lu, W.; Hu, Q.; Bao, F.; Wang, Q. Repeatability and Interobserver Reproducibility of a New Optical Biometer Based on Swept-Source Optical Coherence Tomography and Comparison with IOLMaster. Br. J. Ophthalmol. 2017, 101, 493–498. [Google Scholar] [CrossRef]
- Hua, Y.; Qiu, W.; Xiao, Q.; Wu, Q. Precision (Repeatability and Reproducibility) of Ocular Parameters Obtained by the Tomey OA-2000 Biometer Compared to the IOLMaster in Healthy Eyes. PLoS ONE 2018, 13, e0193023. [Google Scholar] [CrossRef]
- Shu, B.; Bao, F.; Savini, G.; Lu, W.; Tu, R.; Chen, H.; Song, B.; Wang, Q.; Huang, J. Effect of Orthokeratology on Precision and Agreement Assessment of a New Swept-Source Optical Coherence Tomography Biometer. Eye Vis. 2020, 7, 13. [Google Scholar] [CrossRef]
- Kim, K.Y.; Choi, G.S.; Kang, M.S.; Kim, U.S. Comparison Study of the Axial Length Measured Using the New Swept-Source Optical Coherence Tomography ANTERION and the Partial Coherence Interferometry IOL Master. PLoS ONE 2020, 15, e0244590. [Google Scholar] [CrossRef] [PubMed]
- Schiano-Lomoriello, D.; Hoffer, K.J.; Abicca, I.; Savini, G. Repeatability of Automated Measurements by a New Anterior Segment Optical Coherence Tomographer and Biometer and Agreement with Standard Devices. Sci. Rep. 2021, 11, 983. [Google Scholar] [CrossRef] [PubMed]
- Whang, W.J.; Yoo, Y.S.; Kang, M.J.; Joo, C.K. Predictive Accuracy of Partial Coherence Interferometry and Swept-Source Optical Coherence Tomography for Intraocular Lens Power Calculation. Sci. Rep. 2018, 8, 13732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummings, A.B.; Naughton, S.; Coen, A.M.; Brennan, E.; Kelly, G.E. Comparative Analysis of Swept-Source Optical Coherence Tomography and Partial Coherence Interferometry Biometers in the Prediction of Cataract Surgery Refractive Outcomes. Clin. Ophthalmol. 2020, 14, 4209–4220. [Google Scholar] [CrossRef]
- An, Y.; Kang, E.K.; Kim, H.; Kang, M.J.; Byun, Y.S.; Joo, C.K. Accuracy of Swept-Source Optical Coherence Tomography Based Biometry for Intraocular Lens Power Calculation: A Retrospective Cross-Sectional Study. BMC Ophthalmol. 2019, 19, 30. [Google Scholar] [CrossRef] [Green Version]
- Higashiyama, T.; Mori, H.; Nakajima, F.; Ohji, M. Comparison of a New Biometer Using Swept-Source Optical Coherence Tomography and a Conventional Biometer Using Partial Coherence Interferometry. PLoS ONE 2018, 13, e0196401. [Google Scholar] [CrossRef]
- Hussaindeen, J.R.; Mariam, E.G.; Arunachalam, S.; Bhavatharini, R.; Gopalakrishnan, A.; Narayanan, A.; Agarkar, S.; Sivaraman, V. Comparison of Axial Length Using a New Swept-Source Optical Coherence Tomography-Based Biometer-ARGOS with Partial Coherence Interferometry- Based Biometer -IOLMaster among School Children. PLoS ONE 2018, 13, e0209356. [Google Scholar] [CrossRef]
- Reitblat, O.; Levy, A.; Kleinmann, G.; Assia, E.I. Accuracy of Intraocular Lens Power Calculation Using Three Optical Biometry Measurement Devices: The OA-2000, Lenstar-LS900 and IOLMaster-500. Eye 2018, 32, 1244–1252. [Google Scholar] [CrossRef] [Green Version]
- Vasavada, S.A.; Patel, P.; Vaishnav, V.R.; Ashena, Z.; Srivastava, S.; Vasavada, V.; Nanavaty, M.A. Comparison of Optical Low-Coherence Reflectometry and Swept-Source OCT-Based Biometry Devices in Dense Cataracts. J. Refract. Surg. 2020, 36, 557–564. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, Y.; Gao, R.; Chen, H.; Song, B.; Tu, R.; Zhao, Y.; McAlinden, C.; Huang, J. Axial Length Measurement and Detection Rates Using a Swept-Source Optical Coherence Tomography-Based Biometer in the Presence of a Dense Vitreous Hemorrhage. J. Cataract Refract. Surg. 2020, 46, 360–364. [Google Scholar] [CrossRef]
- Du, Y.L.; Wang, G.; Huang, H.C.; Lin, L.Y.; Jin, C.; Liu, L.F.; Liu, X.R.; Zhang, M.Z. Comparison of OA-2000 and IOL Master 500 Using in Cataract Patients with High Myopia. Int. J. Ophthalmol. 2019, 12, 844–847. [Google Scholar] [PubMed]
- Savini, G.; Hoffer, K.J.; Shammas, H.J.; Aramberri, J.; Huang, J.; Barboni, P. Accuracy of a New Swept-Source Optical Coherence Tomography Biometer for Iol Power Calculation and Comparison to IOLMaster. J. Refract. Surg. 2017, 33, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.M.; Lim, D.H.; Kim, H.J.; Chung, T.Y. Comparison of Two Swept-Source Optical Coherence Tomography Biometers and a Partial Coherence Interferometer. PLoS ONE 2019, 14, e0223114. [Google Scholar] [CrossRef]
- Cho, Y.J.; Lim, T.H.; Choi, K.Y.; Cho, B.J. Comparison of Ocular Biometry Using New Swept-Source Optical Coherence Tomography-Based Optical Biometer with Other Devices. Korean J. Ophthalmol. 2018, 32, 257. [Google Scholar] [CrossRef] [PubMed]
- McAlinden, C.; Wang, Q.; Gao, R.; Zhao, W.; Yu, A.; Li, Y.; Guo, Y.; Huang, J. Axial Length Measurement Failure Rates With Biometers Using Swept-Source Optical Coherence Tomography Compared to Partial-Coherence Interferometry and Optical Low-Coherence Interferometry. Am. J. Ophthalmol 2017, 173, 64–69. [Google Scholar] [CrossRef]
- Holzer, M.P.; Mamusa, M.; Auffarth, G.U. Accuracy of a New Partial Coherence Interferometry Analyser for Biometric Measurements. Br. J. Ophthalmol. 2009, 93, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Hoffer, K.J.; Shammas, H.J.; Savini, G. Comparison of 2 Laser Instruments for Measuring Axial Length. J. Cataract Refract. Surg. 2010, 36, 644–648. [Google Scholar] [CrossRef]
- Liampa, Z.; Kynigopoulos, M.; Pallas, G.; Gerding, H. Comparison of Two Partial Coherence Interferometry Devices for Ocular Biometry. Klin. Monbl. Augenheilkd. 2010, 227, 285–288. [Google Scholar] [CrossRef]
- Hill, W.; Angeles, R.; Otani, T. Evaluation of a New IOLMaster Algorithm to Measure Axial Length. J. Cataract Refract. Surg. 2008, 34, 920–924. [Google Scholar] [CrossRef]
- Zhang, J.; Han, X.; Zhang, M.; Liu, Z.; Lin, H.; Qiu, X.; Huang, X.; Li, T.; Lv, L.; Chen, X.; et al. Comparison of Axial Length Measurements in Silicone Oil–Filled Eyes Using SS-OCT and Partial Coherence Interferometry. J. Cataract Refract. Surg. 2022, 48, 1375–1380. [Google Scholar] [CrossRef]
- Holladay, J.T.; Moran, J.R.; Kezirian, G.M. Analysis of Aggregate Surgically Induced Refractive Change, Prediction Error, and Intraocular Astigmatism. J. Cataract Refract. Surg. 2001, 27, 61–79. [Google Scholar] [CrossRef] [PubMed]
- Alpins, N.A.; Goggin, M. Practical Astigmatism Analysis for Refractive Outcomes in Cataract and Refractive Surgery. Surv. Ophthalmol. 2004, 49, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Kim, H.K.; Kim, S.S. Axial Length Measurements: Comparison of a New Swept-Source Optical Coherence Tomography–Based Biometer and Partial Coherence Interferometry in Myopia. J. Cataract Refract. Surg. 2017, 43, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Fişuş, A.D.; Hirnschall, N.D.; Findl, O. Comparison of 2 Swept-Source Optical Coherence Tomography-Based Biometry Devices. J. Cataract Refract. Surg. 2021, 47, 87–92. [Google Scholar] [CrossRef]
- Oh, R.; Oh, J.Y.; Choi, H.J.; Kim, M.K.; Yoon, C.H. Comparison of Ocular Biometric Measurements in Patients with Cataract Using Three Swept-Source Optical Coherence Tomography Devices. BMC Ophthalmol. 2021, 21, 62. [Google Scholar] [CrossRef]
- Moon, J.Y.; Cho, S.C.; Kim, H.J.; Jun, R.M.; Han, K.E. Agreement between Two Swept-Source Optical Coherence Tomography Biometers and a Partial Coherence Interferometer. Korean J. Ophthalmol. 2022, 36, 326–337. [Google Scholar] [CrossRef]
- Cheng, S.M.; Zhang, J.S.; Shao, X.; Wu, Z.T.; Li, T.T.; Wang, P.; Lin, J.H.; Yu, A.Y. Repeatability of a New Swept-Source Optical Coherence Tomographer and Agreement with Other Three Optical Biometers. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 2271–2281. [Google Scholar] [CrossRef]
- Omoto, M.K.; Torii, H.; Masui, S.; Ayaki, M.; Tsubota, K.; Negishi, K. Ocular Biometry and Refractive Outcomes Using Two Swept-Source Optical Coherence Tomography-Based Biometers with Segmental or Equivalent Refractive Indices. Sci. Rep. 2019, 9, 6557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamaoki, A.; Kojima, T.; Hasegawa, A.; Yamamoto, M.; Kaga, T.; Tanaka, K.; Ichikawa, K. Clinical Evaluation of a New Swept-Source Optical Coherence Biometer That Uses Individual Refractive Indices to Measure Axial Length in Cataract Patients. Ophthalmic Res. 2019, 62, 11–23. [Google Scholar] [CrossRef]
- Liao, X.; Peng, Y.; Liu, B.; Tan, Q.Q.; Lan, C.J. Agreement of Ocular Biometric Measurements in Young Healthy Eyes between IOLMaster 700 and OA-2000. Sci. Rep. 2020, 10, 3134. [Google Scholar] [CrossRef]
- Montés-Micó, R. Evaluation of 6 Biometers Based on Different Optical Technologies. J. Cataract Refract. Surg. 2022, 48, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Goto, S.; Maeda, N.; Noda, T.; Ohnuma, K.; Iehisa, I.; Koh, S.; Nishida, K. Change in Optical Axial Length after Cataract Surgery: Segmental Method vs Composite Method. J. Cataract Refract. Surg. 2020, 46, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Higashiyama, T.; Iwasa, M.; Ohji, M. Changes in the Anterior Segment after Cycloplegia with a Biometer Using Swept-Source Optical Coherence Tomography. PLoS ONE 2017, 12, e0183378. [Google Scholar] [CrossRef] [PubMed]
Author | Instrument | No. Eyes (Patients) | Main Findings |
---|---|---|---|
Kim et al. [33] | ANTERION, IOLMaster 500 | 175 (107) | Good correlation and agreement; flatter keratometry values in ANTERION |
Schiano-Lomoriello et al. [34] | ANTERION, IOLMaster 500 | 96 (96) | Good correlation and agreement |
Nemeth et al. [4] | ARGOS, Aladdin | 96 (96) | Excellent repeatability of ARGOS, except astigmatism in phakic and pseudophakic, and ACD in pseudophakic group |
Whang et al. [35] | ARGOS, IOLMaster 500 | 153 (153) | Higher predictive accuracy of ARGOS for IOL calculations in medium-long eyes |
Shammas et al. [3] | ARGOS, IOLMaster 500, Lenstar LS 900 | 107 (66) | AL measurements with Argos were comparable to the other biometers with a higher AL acquisition rate |
Cummings et al. [36] | ARGOS, Lenstar LS 900 | 299 (N.A.) | The predictive accuracies of ARGOS and Lenstar LS 900 are similar, except in medium and long eyes, in which the predictive accuracy of ARGOS is higher |
An et al. [37] | ARGOS, IOLMaster 500, Axis Nano, OM-4 | 431 (431) | No statistically significant difference in mean absolute error between ARGOS and IOLMaster 500, but the measurement failure rate was lower for ARGOS |
Higashiyama et al. [38] | ARGOS, IOLMaster 500 | 48 (48) | The mean ALs with ARGOS were longer than those with IOLMaster 500 in the short-AL group. The mean ALs with ARGOS were shorter than those with IOLMaster 500 in the long-AL group |
Hussaindeen et al. [39] | ARGOS, IOLMaster 500 | 376 (188) | Axial length measurements agreed among children between the ages of 11 and 17 |
Bullimore et al. [6] | IOLMaster 700, IOLMaster 500, Lenstar LS 900 | 100 (100) | Good correlation and agreement, except for AL and mean corneal power |
Akman et al. [7] | IOLMaster 700, IOLMaster 500 | 188 (101) | Good correlation and agreement; IOLMaster 700 more effective in eyes with posterior subcapsular and dense nuclear cataracts |
Kunert et al. [10] | IOLMaster 700, IOLMaster 500, Lenstar LS 900 | 120 (120) | Good correlation and agreement |
Hua Y. et al. [31] | OA-2000, IOLMaster 500 | 108 (108) | Good agreement of ocular parameters, except for the CD value |
Reitblat, O. et al. [40] | OA-2000, IOLMaster 500, Lenstar LS 900 | 140 (90) | In 4.7% of eyes, IOLMaster 500 did not succeed in measuring AL, whereas in 94% of these cases, a reliable AL measurement was achieved with the OA-2000 |
Vasavada, S.A. et al. [41] | OA-2000, Lenstar LS 900 | 124 (76) | Failure in AL measurements in 22.58% of eyes with dense cataract a-analyzed with Lenstar LS 900 compared with 1.6% with OA-2000. Good agreement for keratometric and ACD values. The lowest centroid error was yield by OA-2000, using the Barret toric calculator for toric IOL |
Wang, Q. et al. [42] | OA-2000, IOLMaster 500, Lenstar LS 900 | 40 (38) | In vitreous hemorrhage, the detection rate with the OA-2000 biometer was better than that with the IOLMaster and Lenstar |
Du, Y.L. et al. [43] | OA-2000, IOLMaster 500 | 46 (36) | OA-2000 had a lower AL measurement failure rate in myopic eyes with posterior staphyloma |
Savini, G. et al. [44] | OA-2000, IOLMaster 500 | 249 (249) | A lower median absolute error with OA-2000 comparing its refractive outcomes to those of IOLMaster 500 in IOL power calculation |
Author | Instrument | No. Eyes (Patients) | Main Findings |
---|---|---|---|
Fişuş et al. [56] | ANTERION, IOLMaster 700 | 389 (209) | Good correlation and agreement; minor differences in ACD and LT |
Oh et al. [57] | ANTERION, IOLMaster 700 | 47 (29) | Good correlation and agreement, except for total keratometry |
Moon, J.Y. et al. [58] | ANTERION, OA-2000, IOLMaster 500 | 51 (51) | Good agreement regarding AL; flatter K values with ANTERION |
Cheng, S.M. et al. [59] | ANTERION, OA-2000, IOLMaster 700, Lenstar LS 900 | 101 (101) | Good correlation and agreement (in particular for AL data), except for CCT and IOL power prediction |
Huang et al. [5] | IOLMaster 700, IOLMaster 500, ARGOS, OA-2000 | 171 (119) | SS-OCT biometers showed a significantly higher success rate for AL than the IOLMaster 500 |
Yang et al. [45] | ARGOS, IOLMaster 700, IOLMaster 500 | 146 (83) | Good correlation and agreement, except for AL measurements by ARGOS; LT and CCT values were significantly different |
Omoto et al. [60] | ARGOS, IOLMaster 700 | 106 (106) | Longer parameters of AL and CCT with IOLMaster 700. Longer ACD with ARGOS |
Tamaoki et al. [61] | ARGOS, IOLMaster 700, OA-2000 | 622 (622) | Good comparison and agreement, except for IOL calculation in long eyes. ARGOS showed slightly myopic refraction error |
Sabatino et al. [19] | ARGOS, IOLMaster 700 | 218 (112) | Good correlation and agreement for all parameters except for corneal diameter |
Liao, X. et al. [62] | OA-2000, IOLMaster 700 | 103 (103) | Excellent agreement on ocular biometric measurements and astigmatism power vectors |
Montés-Micó, R. et al. [63] | Aladdin, AL-Scan, ARGOS, IOLMaster 700, Lenstar LS 900, OA-2000 | 150 (150) | Good repeatability and agreement among devices |
Zhang, J. et al. [52] | OA-2000, IOLMaster 700, IOLMaster 500 | 68 (68) | IOLMaster 500 and IOLMaster 700 overestimate the AL in silicone oil-filled eyes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borgia, A.; Raimondi, R.; Sorrentino, T.; Santoru, F.; Buzzi, M.; Borgia, V.; Scorcia, V.; Giannaccare, G. Swept-Source Optical Coherence Tomography-Based Biometry: A Comprehensive Overview. Photonics 2022, 9, 951. https://doi.org/10.3390/photonics9120951
Borgia A, Raimondi R, Sorrentino T, Santoru F, Buzzi M, Borgia V, Scorcia V, Giannaccare G. Swept-Source Optical Coherence Tomography-Based Biometry: A Comprehensive Overview. Photonics. 2022; 9(12):951. https://doi.org/10.3390/photonics9120951
Chicago/Turabian StyleBorgia, Alfredo, Raffaele Raimondi, Tania Sorrentino, Francesco Santoru, Matilde Buzzi, Vittorio Borgia, Vincenzo Scorcia, and Giuseppe Giannaccare. 2022. "Swept-Source Optical Coherence Tomography-Based Biometry: A Comprehensive Overview" Photonics 9, no. 12: 951. https://doi.org/10.3390/photonics9120951
APA StyleBorgia, A., Raimondi, R., Sorrentino, T., Santoru, F., Buzzi, M., Borgia, V., Scorcia, V., & Giannaccare, G. (2022). Swept-Source Optical Coherence Tomography-Based Biometry: A Comprehensive Overview. Photonics, 9(12), 951. https://doi.org/10.3390/photonics9120951