A Deep Reinforcement Learning Algorithm for Smart Control of Hysteresis Phenomena in a Mode-Locked Fiber Laser
Abstract
1. Introduction
2. Experimental Setup
3. Reinforcement Learning
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Genty, G.; Salmela, L.; Dudley, J.M.; Brunner, D.; Kokhanovskiy, A.; Kobtsev, S.; Turitsyn, S.K. Machine learning and applications in ultrafast photonics. Nat. Photonics 2021, 15, 91–101. [Google Scholar] [CrossRef]
- Pu, G.; Yi, L.; Zhang, L.; Luo, C.; Li, Z.; Hu, W. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis. Light Sci. Appl. 2020, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Peng, J.; Boscolo, S.; Zhang, Y.; Finot, C.; Zeng, H. Intelligent breathing soliton generation in ultrafast fiber lasers. Laser Photonics Rev. 2022, 16, 2100191. [Google Scholar] [CrossRef]
- Kokhanovskiy, A.; Bednyakova, A.; Kuprikov, E.; Ivanenko, A.; Dyatlov, M.; Lotkov, D.; Kobtsev, S.; Turitsyn, S. Machine learning-based pulse characterization in figure-eight mode-locked lasers. Opt. Lett. 2019, 44, 3410–3413. [Google Scholar] [CrossRef] [PubMed]
- Andral, U.; Buguet, J.; Fodil, R.S.; Amrani, F.; Billard, F.; Hertz, E.; Grelu, P. Toward an autosetting mode-locked fiber laser cavity. JOSA B 2016, 33, 825–833. [Google Scholar] [CrossRef]
- Zibar, D.; Brusin, A.M.R.; de Moura, U.C.; Da Ros, F.; Curri, V.; Carena, A. Inverse system design using machine learning: The Raman amplifier case. J. Light. Technol. 2019, 38, 736–753. [Google Scholar] [CrossRef]
- Iegorov, R.; Teamir, T.; Makey, G.; Ilday, F. Direct control of mode-locking states of a fiber laser. Optica 2016, 3, 1312–1315. [Google Scholar] [CrossRef]
- Wu, H.; Lin, W.; Tan, Y.J.; Cui, H.; Luo, Z.C.; Xu, W.C.; Luo, A.P. Pulses with switchable wavelengths and hysteresis in an all-fiber spatio-temporal mode-locked laser. Appl. Phys. Express 2020, 13, 022008. [Google Scholar] [CrossRef]
- Kuprikov, E.; Kokhanovskiy, A.; Kobtsev, S.; Turitysin, S. Exploiting hysteresis effect for electronic adjusting of fiber mode-locked laser. In Proceedings of the 2020 International Conference Laser Optics (ICLO), Saint Petersburg, Russia, 2–6 November 2020; IEEE: Piscataway, NJ, USA, 2020; p. 1. [Google Scholar]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Sun, C.; Kaiser, E.; Brunton, S.L.; Kutz, J.N. Deep reinforcement learning for optical systems: A case study of mode-locked lasers. Mach. Learn. Sci. Technol. 2020, 1, 045013. [Google Scholar] [CrossRef]
- Yan, Q.; Deng, Q.; Zhang, J.; Zhu, Y.; Yin, K.; Li, T.; Wu, D.; Jiang, T. Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers. Photonics Res. 2021, 9, 1493–1501. [Google Scholar] [CrossRef]
- Kuprikov, E.; Kokhanovskiy, A.; Serebrennikov, K.; Turitsyn, S. Deep reinforcement learning for self-tuning laser source of dissipative solitons. Sci. Rep. 2022, 12, 7185. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Zhao, L.M.; Zhao, B.; Liu, A. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Phys. Rev. A 2005, 72, 043816. [Google Scholar] [CrossRef]
- Li, R.; Zou, J.; Li, W.; Wang, K.; Du, T.; Wang, H.; Sun, X.; Xiao, Z.; Fu, H.; Luo, Z. Ultrawide-space and controllable soliton molecules in a narrow-linewidth mode-locked fiber laser. IEEE Photonics Technol. Lett. 2018, 30, 1423–1426. [Google Scholar] [CrossRef]
- Komarov, A.; Komarov, K.; Sanchez, F. Quantization of binding energy of structural solitons in passive mode-locked fiber lasers. Phys. Rev. A 2009, 79, 033807. [Google Scholar] [CrossRef]
- Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30. [Google Scholar]
- Nguyen, T.T.; Nguyen, N.D.; Nahavandi, S. Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications. IEEE Trans. Cybern. 2020, 50, 3826–3839. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Sutton, R.S. A deeper look at experience replay. arXiv 2017, arXiv:1712.01275. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Gaskett, C.; Wettergreen, D.; Zelinsky, A. Q-learning in continuous state and action spaces. In Proceedings of the Australasian Joint Conference on Artificial Intelligence, Sydney, Australia, 6–10 December 1999; Springer: Berlin/Heidelberg, Germany, 1999; pp. 417–428. [Google Scholar]
- Espeholt, L.; Soyer, H.; Munos, R.; Simonyan, K.; Mnih, V.; Ward, T.; Doron, Y.; Firoiu, V.; Harley, T.; Dunning, I.; et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 1407–1416. [Google Scholar]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [Google Scholar] [CrossRef]
- Freire, P.J.; Abode, D.; Prilepsky, J.E.; Costa, N.; Spinnler, B.; Napoli, A.; Turitsyn, S.K. Transfer Learning for Neural Networks-Based Equalizers in Coherent Optical Systems. J. Lightwave Technol. 2021, 39, 6733–6745. [Google Scholar] [CrossRef]
- Freire, P.J.; Spinnler, B.; Abode, D.; Prilepsky, J.E.; Ali, A.; Costa, N.; Schairer, W.; Napoli, A.; Ellis, A.D.; Turitsyn, S.K. Domain Adaptation: The Key Enabler of Neural Network Equalizers in Coherent Optical Systems. In Proceedings of the Optical Fiber Communication Conference (OFC) 2022, San Diego, CA, USA, 6–10 March 2022; p. Th2A.35. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokhanovskiy, A.; Shevelev, A.; Serebrennikov, K.; Kuprikov, E.; Turitsyn, S. A Deep Reinforcement Learning Algorithm for Smart Control of Hysteresis Phenomena in a Mode-Locked Fiber Laser. Photonics 2022, 9, 921. https://doi.org/10.3390/photonics9120921
Kokhanovskiy A, Shevelev A, Serebrennikov K, Kuprikov E, Turitsyn S. A Deep Reinforcement Learning Algorithm for Smart Control of Hysteresis Phenomena in a Mode-Locked Fiber Laser. Photonics. 2022; 9(12):921. https://doi.org/10.3390/photonics9120921
Chicago/Turabian StyleKokhanovskiy, Alexey, Alexey Shevelev, Kirill Serebrennikov, Evgeny Kuprikov, and Sergey Turitsyn. 2022. "A Deep Reinforcement Learning Algorithm for Smart Control of Hysteresis Phenomena in a Mode-Locked Fiber Laser" Photonics 9, no. 12: 921. https://doi.org/10.3390/photonics9120921
APA StyleKokhanovskiy, A., Shevelev, A., Serebrennikov, K., Kuprikov, E., & Turitsyn, S. (2022). A Deep Reinforcement Learning Algorithm for Smart Control of Hysteresis Phenomena in a Mode-Locked Fiber Laser. Photonics, 9(12), 921. https://doi.org/10.3390/photonics9120921