Dynamic Tunable Meta-Lens Based on a Single-Layer Metal Microstructure
Abstract
:1. Introduction
2. Unit Cell Design and Characteristics Analysis
3. Dynamically Focusing Analysis and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, D.; Wang, Y.; Qiu, Y.; Feng, Q.; Li, X.; Li, J.; Qiu, G.; Li, J. A Review: The Functional Materials-Assisted Terahertz Met-amaterial Absorbers and Polarization Converters. Photonics 2022, 9, 335. [Google Scholar] [CrossRef]
- Qiu, Y.; Yan, D.X.; Feng, Q.Y.; Li, X.J.; Zhang, L.; Qiu, G.H.; Li, J.N. Vanadium dioxide-assisted switchable multifunctional metamaterial structure. Opt. Express 2022, 30, 26544–26556. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Jiang, C.P. Recent progress in tunable metalenses. Chin. Opt. 2020, 13, 43–61. (In Chinese) [Google Scholar] [CrossRef]
- Sherrott, M.C.; Hon, P.W.C.; Fountaine, K.T.; Garcia, J.C.; Ponti, S.M.; Brar, V.W.; Sweatlock, L.A.; Atwater, H.A. Experimental Demonstration of >230° Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces. Nano Lett. 2017, 17, 3027–3034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belotelov, V.I.; Kreilkamp, L.E.; Akimov, I.A.; Kalish, A.N.; Bykov, D.A.; Kasture, S.; Yallapragada, V.J.; Venu Gopal, A.; Grishin, A.M.; Khartsev, S.I.; et al. Plasmon-mediated magneto-optical transparency. Nat. Commun. 2013, 4, 2128. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Jun Cui, T.; Ji, W.; Liu, S.; Ding, J.; Wan, X.; Bo Li, Y.; Jiang, M.; Qiu, C.W.; Zhang, S. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 2017, 8, 197. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.X.; Zhao, Y.; Qin, R.X.; Mo, S.G.; Chen, G.X.; Gu, L.; Chevrier, D.M.; Zhang, P.; Guo, Q.; Zang, D.D.; et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800. [Google Scholar] [CrossRef] [Green Version]
- Koch, U.; Hoessbacher, C.; Emboras, A.; Leuthold, J. Optical memristive switches. J. Electroceramics 2017, 39, 239–250. [Google Scholar] [CrossRef] [Green Version]
- She, A.; Zhang, S.Y.; Shian, S.; Clarke, D.R.; Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 2018, 4, eaap9957. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Y.; Wang, X.; Ning, F.; Wen, S.; Zhou, Y.; Chen, S.; Betts, A.; Jerrams, S.; Zhou, F.L. Electrohydrodynamic printing of a dielectric elastomer actuator and its application in tunable lenses. Compos. Part A Appl. Sci. Manuf. 2021, 147, 106461. [Google Scholar] [CrossRef]
- Kang, L.; Jenkins, R.P.; Werner, D.H. Recent progress in active optical metasurfaces. Adv. Opt. Mater. 2019, 7, 1801813. [Google Scholar] [CrossRef] [Green Version]
- Arbabi, E.; Arbabi, A.; Kamali, S.M.; Horie, Y.; Faraji-Dana, M.S.; Faraon, A. MEMS-tunable dielectric metasurface lens. Nat. Commun. 2018, 9, 812. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Colburn, S.; Majumdar, A.; Böhringer, K.F. MEMS-actuated metasurface Alvarez lens. Microsyst. Nanoeng. 2020, 6, 79. [Google Scholar] [CrossRef]
- Balli, F.; Sultan, M.A.; Hastings, J.T. Rotationally tunable varifocal 3D metalens. Opt. Lett. 2021, 46, 3548–3551. [Google Scholar] [CrossRef]
- Zhu, W.M.; Song, Q.H.; Yan, L.B.; Zhang, W.; Wu, P.C.; Chin, L.K.; Cai, H.; Tsai, D.P.; Shen, Z.X.; Deng, T.W.; et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. Adv. Mater. 2015, 27, 4739–4743. [Google Scholar] [CrossRef]
- Pishvar, M.; Harne, R.L. Foundations for soft, smart matter by active mechanical metamaterials. Adv. Sci. 2020, 7, 2001384. [Google Scholar] [CrossRef]
- Kowerdziej, R.; Olifierczuk, M.; Salski, B.; Parka, J. Tunable negative index metamaterial employing in-plane switching mode at terahertz frequencies. Liq. Cry. 2012, 39, 827–831. [Google Scholar] [CrossRef]
- Ferraro, A.; Zografopoulos, D.C.; Caputo, R.; Beccherelli, R. Periodical elements as low-cost building blocks for tunable terahertz filters. IEEE Photon. Technol. Lett. 2016, 28, 2459–2462. [Google Scholar] [CrossRef]
- Yan, L.B.; Zhu, W.M.; Wu, P.C. Adaptable metasurface for dynamic anomalous reflection. Appl. Phys. Lett. 2017, 110, 20. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, B.; Duan, J.; Yang, H.; Liu, Y.; Xu, Y.; Xu, H.; Chen, B. Conformal transparent metamaterials inducing ultra-broadband absorption and polarization conversion. J. Infrared Millim. Terahertz Waves 2019, 40, 905–916. [Google Scholar] [CrossRef]
- Ee, H.S.; Agarwal, R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett. 2016, 16, 2818–2823. [Google Scholar] [CrossRef] [PubMed]
- Callewaert, F.; Velev, V.; Jiang, S.; Sahakian, A.V.; Kumar, P.; Aydin, K. Inverse-designed stretchable metalens with tunable focal distance. Appl. Phys. Lett. 2018, 112, 091102. [Google Scholar] [CrossRef] [Green Version]
- Kamali, S.M.; Arbabi, E.; Arbabi, A.; Horie, Y.; Faraon, A. Highly tunable elastic dielectric metasurface lenses. Laser Photonics Rev. 2016, 10, 1002–1008. [Google Scholar] [CrossRef] [Green Version]
- Li, X.J.; Hou, X.M.; Cheng, G.; Qiu, G.H.; Yan, D.X.; Li, J.S. Simulation on tunable graphene metasurface focusing mirror based on flexible substrate. Chin. Opt. 2021, 14, 1019–1028. (In Chinese) [Google Scholar]
- Sathukarn, A.; Jia, Y.C.; Boonruang, S.; Horprathum, M.; Tantiwanichapan, K.; Prasertsuk, K.; Thanapirom, C.; Kusolthossakul, W.; Kasamsook, K. The Simulation of a Surface Plasmon Resonance Metallic Grating for Maximizing THz Sensitivity in Refractive Index Sensor Application. Int. J. Opt. 2020, 2020, 3138725. [Google Scholar] [CrossRef]
- Yang, Y.; Duan, S.; Zhao, H. Advances in constructing silver nanowire-based conductive pathways for flexible and stretchable electronics. Nanoscale 2022, 14, 11484–11511. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.F.; Capasso, F. Flat Optics with Designer Metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef]
- Arbabi, A.; Horie, Y.; Ball, A.J.; Bagheri, M.; Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmit arrays. Nat. Commun. 2015, 6, 7069–7074. [Google Scholar] [CrossRef]
- Lin, P.; Lin, Y.S.; Lin, J.; Yang, B.R. Stretchable metalens with tunable focal length and achromatic characteristics. Results Phys. 2021, 31, 105005. [Google Scholar] [CrossRef]
Ref. | Cell Structure | Fabrication Realization | Stretching Scope | Wavelength/Band | Focusing Scope | Focusing Efficiency |
---|---|---|---|---|---|---|
[24] | Si | Yes | 100–150% | 915 nm | 2.3fL(fL = 600 μm) | 75% |
[22] | Au | Yes | 100–130% | 632 nm | 1.6fL(fL = 150 μm) | N/A |
[30] | Al2O3 | No | 100–170% | 660 nm | 2.2fL(fL = 42 μm) | N/A |
This work | C-shaped SRR | No | 100–120% | 3 mm(0.1THz) | 2.2fL(fL = 60 mm) | 10.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, H.; Hou, X.; Yan, D. Dynamic Tunable Meta-Lens Based on a Single-Layer Metal Microstructure. Photonics 2022, 9, 917. https://doi.org/10.3390/photonics9120917
Li X, Liu H, Hou X, Yan D. Dynamic Tunable Meta-Lens Based on a Single-Layer Metal Microstructure. Photonics. 2022; 9(12):917. https://doi.org/10.3390/photonics9120917
Chicago/Turabian StyleLi, Xiangjun, Huadong Liu, Xiaomei Hou, and Dexian Yan. 2022. "Dynamic Tunable Meta-Lens Based on a Single-Layer Metal Microstructure" Photonics 9, no. 12: 917. https://doi.org/10.3390/photonics9120917