Compressive Bidirectional Reflection Distribution Function-Based Feature Extraction Method for Camouflaged Object Segmentation
Abstract
:1. Introduction
- A multidimensional feature extraction method using multi-angle illumination images is proposed to improve the accuracy of object segmentation. The influence of the illumination image on reflectance is considered to help enrich the details of object;
- We present a compression method for multidimensional BRDF features to improve the computing speed of feature clustering. In addition, the degree of retention of valid information during the compression process is also considered;
- Experimental results demonstrate the usefulness and effectiveness of the proposed compressive BRDF feature extraction method in both segmentation accuracy and execution time.
2. Background
3. Model Construction of Camouflaged Object Segmentation Method Based on Compressive BRDF Feature Extraction
3.1. Extraction of the Compressive BRDF Feature
3.2. Object Segmentation Based on the Compressive BRDF Feature
4. Experiment and Analysis
4.1. Analysis of Feature Compression of Different Dimensions
4.2. Comparative Analysis of Different Camouflaged Object Segmentation Methods
4.3. Comparison of Performance for Methods Based on Grey Images
5. Conclusions
5.1. Summary of Our Method
5.2. Limitations
5.3. Application Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shinde, R.C.; Jibu, M.C.; Patil, C. Segmentation Technique for Soybean Leaves Disease Detection. Int. J. Adv. Res. 2015, 5, 522–528. [Google Scholar]
- Bukhari, H.R.; Mumtaz, R.; Inayat, S.; Shafi, U.; Haq, I.U.; Zaidi, S.M.H.; Hafeez, M. Assessing the Impact of Segmentation on Wheat Stripe Rust Disease Classification Using Computer Vision and Deep Learning. IEEE Access 2021, 9, 164986–165004. [Google Scholar] [CrossRef]
- Patil, R.; Hegadi, R.S. Segmrntation on cotton insects and pests using image processing. In Proceedings of the National Conference on Current Trends in Advanced Computing and e-Learning, Uttar Pradesh, India, 6–7 October 2009. [Google Scholar]
- Yan, J.; Le, T.; Nguyen, K.; Tran, M.; Do, T.; Nguyen, T.V. MirrorNet: Bio-Inspired Camouflaged Object Segmentation. IEEE Access 2021, 9, 43290–43300. [Google Scholar] [CrossRef]
- Chowdhury, T.; Rahnemoonfar, M. Attention based semantic segmentation on UAV dataset for natural disaster damage assessment. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11–16 July 2021. [Google Scholar]
- Ren, Y.; Liu, Y. Geological disaster detection from remote sensing image based on experts’ knowledge and image features. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016. [Google Scholar]
- Ji, Z.; Meng, X. Automatic Identification of Targets Detected by Battlefield Scout Ragar. J. Harbin Inst. Technol. 2011, 33, 830–833. (In Chinese) [Google Scholar]
- Wan, M.; Gu, G.; Qian, W.; Ren, K.; Chen, Q. Stokes-vector-based Polarimetric Imaging System for Adaptive Target/Background Contrast Enhancement. Appl. Opt. 2016, 55, 5513–5519. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wan, M.; Ge, J.; Chen, H.; Zhu, X.; Zhang, X.; Chen, Q.; Gu, G. ColorPolarNet: Residual Dense Network-Based Chromatic Intensity-Polarization Imaging in Low Light Environment. IEEE Trans. Instrum. Meas. 2022, 71, 5025210. [Google Scholar] [CrossRef]
- Goccia, M.; Bruzzo, M.; Scagliola, C.; Dellepiane, S. Recognition of container code characters through gray–level feature extraction and gradient–based classifier optimization. In Proceedings of the International Conference on Document Analysis & Recognition, Edinburgh, UK, 3–6 August 2003. [Google Scholar]
- Zhao, J.; Liu, M.; Yang, G. Discrimination of Mature Tomato Based on HIS Color Space in Natural Outdoor Scenes. Trans. Chin. Soc. Agric. Mach. 2004, 35, 122–125. (In Chinese) [Google Scholar]
- Zheng, L.; Zhang, J.; Wang, Q. Mean-shift-based Color Segmentation of Images Containing Green Vegetation. Comput. Electron. Agric. 2009, 65, 93–98. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, S.; Cui, H.; Cui, P. Automated Crater Detection Method Using Gray Value Features and Planet Landing Navigation Research. J. Astronaut. 2014, 35, 908–915. (In Chinese) [Google Scholar]
- Guo, C.; Wang, X.; Shi, C.; Jin, H. Corn Leaf Image Segmentation Based on Improved Kmeans Algorithm. J. North Univ. China (Nat. Sci. Ed.) 2021, 42, 524–529. (In Chinese) [Google Scholar]
- Liu, X. Multi-Angle Identification of Potato Late Blight Based on Multi-Spectral Imaging. Master’s Thesis, Yunnan Normal University, Kunming, China, 7 June 2017. (In Chinese). [Google Scholar]
- Yan, Y.; Hua, W.; Zhang, Y.; Cui, Z.; Wu, X.; Liu, X. Hyperspectral camouflage object characteristic analysis. In Proceedings of the International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices for Sensing and Imaging, Chengdu, China, 8 February 2019. [Google Scholar]
- Yang, Y. Bearing Surface Defect Detection System Based on Multi-Angle Light Source Image. Master’s Thesis, Dalian University of Technology, Dalian, China, 3 June 2019. (In Chinese). [Google Scholar]
- Wu, J. Research on Textiles Color Segmentation and Extraction Based on Hyperspectral Imaging Technology. Master’s Thesis, Zhejiang Sci-Tech University, Hangzhou, China, 24 December 2019. (In Chinese). [Google Scholar]
- Wang, C.; Chen, W.; Lu, C.; Wang, Q. Segmentation Method for Maize Stubble Row Based on Hyperspectral Imaging. Trans. Chin. Soc. Agric. Mach. 2020, 51, 421–426. (In Chinese) [Google Scholar]
- Wang, O.; Gunawardane, P.; Scher, S.; Davis, J. Material classification using BRDF slices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Skaff, S. Material Classification Using BRDF Slices. U.S. Patent US2015/0012226 A1, 8 January 2015. [Google Scholar]
- Zhao, H.; Nie, F.; Tao, H. Study on BRDF Feature Model of Rock Surface. J. Hubei Univ. Arts Sci. 2015, 36, 481–502. (In Chinese) [Google Scholar]
- Nicodemus, F. Directional Reflectance and Emissivity of an Opaque Surface. Appl. Opt. 1965, 4, 767–773. [Google Scholar] [CrossRef]
- Cook, R.; Torrance, K. A Reflectance Models for Computer Graphics. ACM Trans. Graph. 1982, 1, 7–24. [Google Scholar] [CrossRef]
- Revers, M. On the Asymptotics of Polynomial Interpolation to at the Chebyshev Nodes. J. Approx. Theory 2013, 165, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, J.; Zhang, Z. Distribution of a Sequence of Chebyshev Polynomials. Math. Pract. Theory 2022, 52, 276–280. (In Chinese) [Google Scholar]
- Anzai, Y. Pattern Recognition and Machine Learning; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Rivest, J. Detection of Dim Targets in Digital Infrared Imagery by Morphological Image Processing. Opt. Eng. 1996, 35, 1886–1893. [Google Scholar] [CrossRef]
- Gao, C.; Meng, D.; Yang, Y.; Wang, Y.; Zhou, X.; Hauptmann, A.G. Infrared Patch-Image Model for Small Object Detection in a Single Image. IEEE Trans. Image Process. 2013, 22, 4996–5009. [Google Scholar] [CrossRef] [PubMed]
Steps | Procedure |
---|---|
1 | Take 39 images of the same scene with various incident angles of light and fix the emergent angle of the camera. |
2 | Extract the grey values from the images and obtain the 39-dimensional grey-level feature of each pixel. |
3 | Compress the 39-dimensional grey-level features into low-dimensional features by the Chebyshev polynomial expansion. |
4 | Cluster the compressive BRDF features of the pixels into two categories, one of which is the camouflaged object and the other one is background. |
(%)/ (%) | 3 | 5 | 7 | 9 | 11 | 13 |
---|---|---|---|---|---|---|
Group 1 | 90.50/45.44 | 89.30/42.18 | 89.54/44.49 | 89.57/45.18 | 91.74/47.30 | 85.39/44.19 |
Group 2 | 67.51/1.59 | 76.01/1.65 | 80.40/1.66 | 79.69/1.69 | 78.58/1.70 | 79.59/1.68 |
Group 3 | 96.94/33.57 | 96.73/29.88 | 96.87/21.06 | 96.95/30.36 | 96.68/22.10 | 96.94/30.48 |
Group 4 | 92.41/45.66 | 92.60/42.85 | 93.29/43.98 | 93.72/48.22 | 94.47/47.72 | 94.81/50.61 |
Group 5 | 73.11/32.24 | 73.50/32.77 | 74.01/33.77 | 74.23/34.16 | 71.98/30.62 | 74.41/34.86 |
Average | 84.09/31.70 | 85.63/29.86 | 86.82/28.99 | 86.83/31.92 | 86.69/29.89 | 86.23/32.36 |
Time (s) | 3 | 5 | 7 | 9 | 11 | 13 |
---|---|---|---|---|---|---|
Group 1 | 2.72 | 2.12 | 2.06 | 3.44 | 2.77 | 2.80 |
Group 2 | 2.75 | 1.36 | 2.74 | 2.05 | 2.07 | 2.08 |
Group 3 | 3.40 | 2.03 | 1.37 | 1.40 | 2.10 | 3.46 |
Group 4 | 2.05 | 2.05 | 1.40 | 3.48 | 1.38 | 2.80 |
Group 5 | 6.56 | 5.10 | 5.59 | 4.42 | 6.61 | 4.47 |
Average | 3.49 | 2.53 | 2.63 | 2.96 | 2.99 | 3.12 |
(%)/ (%) | Method 1 (7D) | Method 2 (Best ) | Method 2 (Best ) | Method 2 (Average) | Method 3 |
---|---|---|---|---|---|
Group 1 | 89.54/44.49 | 96.53/64.37 | 39.69/22.26 | 79.47/51.58 | 88.83/39.96 |
Group 2 | 80.40/1.66 | 96.55/50.41 | 35.26/1.33 | 67.45/20.71 | 76.33/1.67 |
Group 3 | 96.87/21.06 | 98.56/69.76 | 59.86/16.14 | 81.68/56.19 | 96.70/22.61 |
Group 4 | 93.29/43.98 | 98.05/76.37 | 66.21/33.25 | 80.13/58.67 | 92.22/40.03 |
Group 5 | 74.01/33.77 | 89.17/80.14 | 15.82/21.54 | 60.91/54.34 | 70.40/36.69 |
Average | 86.82/28.99 | 95.77/68.21 | 43.37/18.90 | 73.93/48.30 | 84.90/28.19 |
Time (s) | Method 1 (7D) | Method 2 (Best ) | Method 2 (Best ) | Method 2 (Average) | Method 3 |
---|---|---|---|---|---|
Group 1 | 2.06 | 0.19 | 0.35 | 0.24 | 3.62 |
Group 2 | 2.74 | 0.17 | 0.35 | 0.24 | 2.88 |
Group 3 | 1.37 | 0.17 | 0.17 | 0.23 | 5.97 |
Group 4 | 1.40 | 0.18 | 0.35 | 0.21 | 2.17 |
Group 5 | 5.59 | 0.50 | 0.70 | 0.56 | 8.30 |
Average | 2.63 | 0.24 | 0.39 | 0.30 | 4.59 |
(%)/ (%) | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Average |
---|---|---|---|---|---|---|
76 | 86.83/71.76 | 84.53/27.08 | 93.91/71.24 | 59.52/76.19 | 87.93/81.40 | 82.54/65.53 |
74 | 76.83/55.33 | 95.45/47.63 | 93.85/69.51 | 35.76/47.52 | 20.44/63.26 | 64.47/56.65 |
72 | 67.87/38.10 | 84.06/23.79 | 42.18/64.61 | 55.67/51.22 | 14.99/60.96 | 52.96/47.74 |
70 | 77.90/51.18 | 87.41/29.66 | 93.37/70.47 | 41.91/41.06 | 4.76/33.32 | 61.07/45.14 |
68 | 47.16/31.06 | 84.66/26.89 | 32.68/62.17 | 64.95/57.50 | 24.47/46.55 | 50.78/44.83 |
66 | 58.17/30.06 | 87.95/30.89 | 94.79/73.28 | 50.25/77.34 | 64.85/64.05 | 71.20/55.12 |
64 | 39.69/22.26 | 96.55/50.41 | 57.10/64.69 | 49.04/37.47 | 67.37/65.15 | 61.95/47.99 |
62 | 81.28/51.84 | 67.78/17.89 | 68.95/62.87 | 96.92/67.84 | 71.90/66.40 | 77.36/53.37 |
60 | 89.93/63.44 | 84.66/34.12 | 77.04/66.65 | 95.83/60.12 | 42.93/49.57 | 78.08/54.78 |
58 | 42.40/24.33 | 68.63/29.22 | 37.57/57.38 | 97.71/72.80 | 47.30/50.06 | 58.72/46.76 |
56 | 82.08/41.95 | 61.07/32.03 | 74.70/69.00 | 94.53/66.14 | 21.24/35.77 | 66.72/48.98 |
54 | 92.86/58.38 | 48.02/32.80 | 66.79/72.28 | 56.62/42.43 | 89.17/80.14 | 70.69/57.20 |
52 | 91.65/53.80 | 46.16/39.52 | 67.49/65.68 | 98.05/76.37 | 60.78/50.99 | 72.83/57.27 |
50 | 56.62/29.77 | 48.32/54.40 | 65.04/63.52 | 87.40/56.08 | 29.44/36.16 | 57.36/47.99 |
48 | 88.97/58.73 | 31.24/28.00 | 83.35/56.68 | 97.46/60.19 | 65.54/51.69 | 73.31/51.06 |
46 | 83.03/52.08 | 74.25/50.76 | 97.63/71.93 | 96.46/54.22 | 33.52/36.46 | 76.98/53.09 |
44 | 91.43/48.66 | 82.26/40.79 | 81.02/48.40 | 97.23/59.34 | 82.50/71.51 | 86.89/53.74 |
42 | 94.61/66.11 | 85.78/28.88 | 97.30/67.71 | 97.16/59.41 | 71.88/52.39 | 89.35/54.90 |
40 | 93.27/63.75 | 60.87/1.68 | 34.33/36.06 | 97.38/67.89 | 82.94/72.22 | 73.76/48.32 |
38 | 93.65/63.30 | 67.73/2.28 | 96.25/48.08 | 92.78/54.11 | 15.82/21.54 | 73.24/37.86 |
36 | 81.38/39.35 | 72.80/1.62 | 97.22/64.67 | 97.70/70.42 | 16.70/21.72 | 73.16/39.56 |
34 | 89.31/56.16 | 71.09/1.67 | 96.59/43.23 | 97.23/57.77 | 82.95/72.86 | 87.43/46.34 |
32 | 94.58/54.06 | 72.93/1.77 | 59.86/16.14 | 85.02/36.03 | 46.51/37.35 | 71.78/29.07 |
30 | 94.82/64.40 | 54.20/1.47 | 96.63/47.12 | 97.13/65.57 | 83.67/73.51 | 85.29/50.41 |
28 | 60.37/45.14 | 57.70/1.52 | 96.60/29.17 | 66.21/33.25 | 83.55/73.62 | 72.89/36.54 |
26 | 91.16/47.09 | 76.31/2.25 | 96.91/54.07 | 96.51/51.57 | 76.88/52.68 | 87.55/41.53 |
24 | 96.53/64.37 | 71.79/1.61 | 96.56/34.95 | 96.70/63.27 | 76.00/52.37 | 87.51/43.31 |
22 | 55.06/34.96 | 76.73/1.67 | 94.37/40.27 | 97.64/67.66 | 76.77/51.67 | 80.12/39.25 |
20 | 92.95/52.38 | 65.06/1.58 | 97.91/71.13 | 90.39/59.51 | 77.07/51.12 | 84.68/47.14 |
18 | 93.07/53.23 | 35.26/1.33 | 97.09/47.73 | 97.62/70.25 | 85.16/73.37 | 81.64/49.18 |
16 | 67.45/44.01 | 63.39/2.81 | 97.06/61.37 | 97.56/67.76 | 85.03/73.08 | 82.10/49.81 |
14 | 82.14/50.76 | 36.98/1.89 | 92.01/38.38 | 53.10/42.06 | 53.11/30.77 | 63.47/32.77 |
12 | 94.87/69.83 | 32.60/3.67 | 97.95/59.24 | 55.75/58.14 | 49.99/30.40 | 66.23/44.26 |
10 | 83.71/54.30 | 32.87/40.92 | 97.70/63.58 | 70.18/47.50 | 77.54/45.94 | 72.4/50.45 |
8 | 87.90/59.33 | 59.96/55.16 | 97.17/47.29 | 95.07/58.72 | 84.10/70.22 | 84.84/58.14 |
6 | 48.03/46.04 | 52.04/3.35 | 98.56/69.76 | 77.14/51.62 | 83.65/69.29 | 71.88/48.01 |
4 | 72.76/56.44 | 86.54/45.15 | 67.35/45.64 | 67.46/62.66 | 76.78/42.27 | 74.18/50.43 |
2 | 88.09/71.36 | 73.19/2.44 | 55.37/32.73 | 68.51/75.63 | 76.93/40.82 | 72.42/44.60 |
0 | 89.06/72.56 | 91.67/7.26 | 97.14/62.66 | 55.55/63.36 | 83.54/66.73 | 83.39/54.51 |
Average | 79.47/51.58 | 67.45/20.71 | 81.68/56.19 | 80.13/58.67 | 60.91/54.34 | 73.93/48.30 |
Number | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Average |
---|---|---|---|---|---|---|
: Method 1 > Method 2. | 25 | 27 | 27 | 20 | 20 | 23.8 |
: Method 1 < Method 2. | 29 | 33 | 38 | 33 | 34 | 33.4 |
Time (s) | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Average |
---|---|---|---|---|---|---|
76 | 0.18 | 0.18 | 0.18 | 0.17 | 0.57 | 0.26 |
74 | 0.18 | 0.18 | 0.17 | 0.17 | 0.71 | 0.28 |
72 | 0.18 | 0.18 | 0.18 | 0.18 | 0.58 | 0.26 |
70 | 0.35 | 0.18 | 0.18 | 0.18 | 0.59 | 0.29 |
68 | 0.18 | 0.17 | 0.17 | 0.18 | 0.75 | 0.29 |
66 | 0.17 | 0.17 | 0.18 | 0.17 | 0.66 | 0.27 |
64 | 0.35 | 0.17 | 0.35 | 0.18 | 0.69 | 0.35 |
62 | 0.35 | 0.18 | 0.17 | 0.18 | 0.65 | 0.31 |
60 | 0.18 | 0.18 | 0.17 | 0.18 | 0.50 | 0.24 |
58 | 0.36 | 0.18 | 0.17 | 0.18 | 0.48 | 0.27 |
56 | 0.17 | 0.17 | 0.18 | 0.18 | 0.50 | 0.24 |
54 | 0.18 | 0.18 | 0.18 | 0.18 | 0.50 | 0.24 |
52 | 0.17 | 0.18 | 0.18 | 0.18 | 0.56 | 0.25 |
50 | 0.35 | 0.17 | 0.18 | 0.18 | 0.54 | 0.28 |
48 | 0.18 | 0.17 | 0.18 | 0.35 | 0.51 | 0.28 |
46 | 0.36 | 0.17 | 0.36 | 0.18 | 0.54 | 0.32 |
44 | 0.17 | 0.18 | 0.17 | 0.35 | 0.53 | 0.28 |
42 | 0.18 | 0.18 | 0.17 | 0.18 | 0.84 | 0.31 |
40 | 0.36 | 0.35 | 0.35 | 0.18 | 0.77 | 0.40 |
38 | 0.36 | 0.52 | 0.18 | 0.37 | 0.70 | 0.43 |
36 | 0.36 | 0.18 | 0.18 | 0.18 | 0.52 | 0.28 |
34 | 0.18 | 0.53 | 0.17 | 0.17 | 0.58 | 0.33 |
32 | 0.18 | 0.53 | 0.17 | 0.35 | 0.51 | 0.35 |
30 | 0.18 | 0.35 | 0.18 | 0.36 | 0.51 | 0.31 |
28 | 0.37 | 0.35 | 0.35 | 0.35 | 0.48 | 0.38 |
26 | 0.19 | 0.18 | 0.35 | 0.18 | 0.49 | 0.28 |
24 | 0.19 | 0.53 | 0.35 | 0.18 | 0.52 | 0.35 |
22 | 0.37 | 0.17 | 0.35 | 0.18 | 0.46 | 0.31 |
20 | 0.37 | 0.53 | 0.18 | 0.17 | 0.49 | 0.35 |
18 | 0.18 | 0.35 | 0.35 | 0.35 | 0.49 | 0.34 |
16 | 0.35 | 0.18 | 0.18 | 0.18 | 0.53 | 0.28 |
14 | 0.18 | 0.18 | 0.35 | 0.18 | 0.48 | 0.27 |
12 | 0.17 | 0.17 | 0.35 | 0.18 | 0.54 | 0.28 |
10 | 0.18 | 0.17 | 0.18 | 0.18 | 0.52 | 0.25 |
8 | 0.17 | 0.18 | 0.18 | 0.18 | 0.65 | 0.27 |
6 | 0.35 | 0.18 | 0.17 | 0.18 | 0.51 | 0.28 |
4 | 0.17 | 0.18 | 0.35 | 0.18 | 0.44 | 0.26 |
2 | 0.18 | 0.18 | 0.35 | 0.18 | 0.50 | 0.28 |
0 | 0.18 | 0.35 | 0.18 | 0.18 | 0.41 | 0.26 |
Average | 0.18 | 0.18 | 0.18 | 0.17 | 0.57 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Xu, Y.; Shao, A.; Kong, X.; Chen, Q.; Gu, G.; Wan, M. Compressive Bidirectional Reflection Distribution Function-Based Feature Extraction Method for Camouflaged Object Segmentation. Photonics 2022, 9, 915. https://doi.org/10.3390/photonics9120915
Chen X, Xu Y, Shao A, Kong X, Chen Q, Gu G, Wan M. Compressive Bidirectional Reflection Distribution Function-Based Feature Extraction Method for Camouflaged Object Segmentation. Photonics. 2022; 9(12):915. https://doi.org/10.3390/photonics9120915
Chicago/Turabian StyleChen, Xueqi, Yunkai Xu, Ajun Shao, Xiaofang Kong, Qian Chen, Guohua Gu, and Minjie Wan. 2022. "Compressive Bidirectional Reflection Distribution Function-Based Feature Extraction Method for Camouflaged Object Segmentation" Photonics 9, no. 12: 915. https://doi.org/10.3390/photonics9120915
APA StyleChen, X., Xu, Y., Shao, A., Kong, X., Chen, Q., Gu, G., & Wan, M. (2022). Compressive Bidirectional Reflection Distribution Function-Based Feature Extraction Method for Camouflaged Object Segmentation. Photonics, 9(12), 915. https://doi.org/10.3390/photonics9120915