Optical Vortex Beams with a Symmetric OAM Spectrum beyond a Sector Aperture
Abstract
:1. Introduction
2. Orbital Angular Momentum of Superposition of Vortices with Symmetric Spectrum
3. Topological Charge of Superposition of Vortices with Symmetric OAM Spectrum
4. Conservation of the OAM Carried by a Field with Symmetric OAM Spectrum after Passing through a Sector Aperture
5. Topological Charge of Superposition with Symmetric OAM Spectrum after Passing through a Sector Aperture
6. Simulation
6.1. Preservation of OAM after Diaphragm
6.2. Integer TC of the Beam after Passing through a Sector Aperture
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kotlyar, V.V.; Kovalev, A.A.; Porfirev, A.P. Vortex Laser Beams; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Gori, F.; Guattari, G.; Padovani, C. Bessel-Gauss beams. Opt. Commun. 1987, 64, 491–495. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Skidanov, R.V.; Khonina, S.N.; Soifer, V.A. Hypergeometric modes. Opt. Lett. 2007, 32, 742–744. [Google Scholar] [CrossRef]
- Karimi, E.; Zito, G.; Piccirillo, B.; Marrucci, L.; Santamato, E. Hypergeometric-Gaussian modes. Opt. Lett. 2007, 32, 3053–3055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotlyar, V.V.; Kovalev, A.A. Family of hypergeometric laser beams. J. Opt. Soc. Am. A 2008, 25, 262–270. [Google Scholar] [CrossRef]
- Bandres, M.A.; Gutiérrez-Vega, J.C. Circular beams. Opt. Lett. 2008, 33, 177–179. [Google Scholar] [CrossRef] [Green Version]
- Kovalev, A.A.; Kotlyar, V.V. Orbital angular momentum of superpositions of optical vortices perturbed by a sector aperture. Photonics 2022, 9, 531. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A. Optical vortex beams with a symmetric and almost symmetric OAM spectrum. J. Opt. Soc. Am. A 2021, 38, 1276–1283. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Zhou, G.; Li, X.; Zheng, X.; Tang, H. Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere. Opt. Express 2008, 16, 21315. [Google Scholar] [CrossRef]
- Yuan, Y.; Lei, T.; Li, Z.; Li, Y.; Gao, S.; Xie, Z.; Yuan, X. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams. Sci. Rep. 2017, 7, 42276. [Google Scholar] [CrossRef]
- Gruska, J. Propagation and self-healing properties of Bessel-Gaussian beam carrying orbital angular momentum in an underwater environment. Sci. Rep. 2019, 9, 2025. [Google Scholar]
- Li, J.; Yang, S.; Guo, L. Propagation characteristics of Gaussian beams in plasma sheath turbulence. IET Microw. Antennas Prop. 2017, 11, 280. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, G.; Deng, Q.; Yang, L.; Li, J. Analysis of Gaussian beam broadening and scintillation index in anisotropic plasma turbulence. Waves Rand. Complex Media, 2022, in press. [CrossRef]
- Li, J.; Yang, S.; Guo, L.; Cheng, M. Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence. Appl. Opt. 2016, 55, 9137. [Google Scholar] [CrossRef]
- Wang, J. Advances in communications using optical vortices. Photonics Res. 2016, 4, B14. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Liu, J.; Li, S.; Zhao, Y.; Du, J.; Zhu, L. Orbital angular momentum and beyond in free-space optical communications. Nanophotonics 2022, 11, 645. [Google Scholar] [CrossRef]
- Willner, A.E.; Pang, K.; Song, H.; Zou, K.; Zhou, H. Orbital angular momentum of light for communications. Appl. Phys. Rev. 2021, 8, 041312. [Google Scholar] [CrossRef]
- Zhu, Z.; Janasik, M.; Fyffe, A.; Hay, D.; Zhou, Y.; Kantor, B.; Winder, T.; Boyd, R.W.; Leuchs, G.; Shi, Z. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams. Nat. Commun. 2021, 12, 1666. [Google Scholar] [CrossRef]
- Berry, M.V.; Jeffrey, M.R.; Mansuripur, M. Orbital and spin angular momentum in conical diffraction. J. Opt. A Pure Appl. Opt. 2005, 7, 685–690. [Google Scholar] [CrossRef]
- Berry, M.V. Optical vortices evolving from helicoidal integer and fractional phase steps. J. Opt. A Pure Appl. Opt. 2004, 6, 259–268. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables; National Bureau of Standards: Gaithersburg, MD, USA, 1965.
- Tamburini, F.; Mari, E.; Sponselli, A.; Thide, B.; Bianchini, A.; Romanato, F. Encoding many channels on the same frequency through radio vorticity: First experimental test. New J. Phys. 2012, 14, 033001. [Google Scholar] [CrossRef] [Green Version]
- Petrov, D.V. Vortex-edge dislocation interaction in a linear medium. Opt. Commun. 2001, 188, 307–312. [Google Scholar] [CrossRef]
- Petrov, D.V. Splitting of an edge dislocation by an optical vortex. Opt. Quantum Electron. 2002, 34, 759–773. [Google Scholar] [CrossRef]
- He, D.; Yan, H.; Lu, B. Interaction of the vortex and edge dislocation embedded in a cosh-Gaussian beam. Opt. Commun. 2009, 282, 4035–4044. [Google Scholar] [CrossRef]
- Franke-Arnold, S.; Barnet, S.M.; Yao, E.; Leach, J.; Courtial, J.; Padgett, M. Uncertainty principle for angular position and angular momentum. New J. Phys. 2004, 6, 103. [Google Scholar] [CrossRef] [Green Version]
- Volyar, A.V.; Akimova, Y.E. Transformations of structurally stable states of spiral beams subjected to sector perturbations. Comput. Opt. 2021, 45, 789–799. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotlyar, V.V.; Kovalev, A.A.; Nalimov, A.G. Optical Vortex Beams with a Symmetric OAM Spectrum beyond a Sector Aperture. Photonics 2022, 9, 734. https://doi.org/10.3390/photonics9100734
Kotlyar VV, Kovalev AA, Nalimov AG. Optical Vortex Beams with a Symmetric OAM Spectrum beyond a Sector Aperture. Photonics. 2022; 9(10):734. https://doi.org/10.3390/photonics9100734
Chicago/Turabian StyleKotlyar, Victor V., Alexey A. Kovalev, and Anton G. Nalimov. 2022. "Optical Vortex Beams with a Symmetric OAM Spectrum beyond a Sector Aperture" Photonics 9, no. 10: 734. https://doi.org/10.3390/photonics9100734
APA StyleKotlyar, V. V., Kovalev, A. A., & Nalimov, A. G. (2022). Optical Vortex Beams with a Symmetric OAM Spectrum beyond a Sector Aperture. Photonics, 9(10), 734. https://doi.org/10.3390/photonics9100734