Tunable Multi-Channels Bandpass InGaAsP Plasmonic Filter Using Coupled Arrow Shape Cavities
Abstract
:1. Introduction
2. Structure, Materials, and Method
2.1. Structure of Multi-Channel Bandpass Filter (Fixed & Tunable)
2.2. Materials
- Fixed channels bandpass filter materials are air (insulator medium fills the bus waveguide and dual arrow-shaped cavities) and silver (Ag metal medium). Silver has been selected because it is a dominant conductor in the optical and near-infrared range. The silver permittivity must be determined when studying the filter wavelength response over the desired band. Many analytical models are used to represent the optical properties of the metallic nanoparticles. However, all these models were developed to fit the experimental data (Johnson and Christy). However, the number of parameters, which are used for fitting the experimental data, can affect the accuracy of the simulation results [56,57]. Since there are no reliable models for nanomaterials, the measurements by Johnson and Christy are preferable for expressing silver permittivity (εm) in the visible range [56,58].
- Tunable channels bandpass filter materials are: non-linear optical (NLO) material [59] and silver. The refractive index of NLO materials is sensitive to the intensity of the incident light, which is why the resonance wavelengths can be controlled without changing the outer size of the structure. InGaAsP is one of the top-tier NLO materials because of its chemical stability, high optical damage threshold, ease of attainment in crystalline form, broad operating ranges of wavelength and temperature, and conversion efficiency [60]. InGaAsP fills the bus waveguide and dual arrow-shaped cavities. The equation of nonlinear dielectric constant, εd, for InGaAsP is as follows [40]:εd = εL + χ(3) |E|2
2.3. Numerical Method
- A quadratic shape function.
- “Extremely fine” mesh element size with the total number of elements = 526.
3. Numerical Results
3.1. Fixed Multi-Channel Bandpass Filter
3.2. Tunable Multi-Channel Bandpass Filter Based InGaAsP
4. Discussion
- A triple-channel bandpass filter with a high transmission efficiency and narrow bandwidth can be designed by selecting the value of the coupling distance to be 100 nm.
- A triple-channel bandpass filter with a high transmission efficiency and wide bandwidth, can be designed by selecting the value of the coupling distance to be more than 200 nm.
- A tunable multi-channel bandpass filter with high transmission peaks can be controlled over a range from 600 nm to 1200, thanks to InGaAsP.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raether, H. Surface plasmons on gratings. In Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer: Berlin/Heidelberg, Germany, 1988; pp. 91–116. [Google Scholar]
- Heikal, A.; Hameed, M.F.O.; Obayya, S.S.A. Basic principles of surface plasmon resonance. In Computational Photonic Sensors; Springer: Berlin/Heidelberg, Germany, 2019; pp. 53–72. [Google Scholar]
- Alagdar, M.; Yousif, B.; Areed, N.F.F.; Elzalabani, M. Highly sensitive fiber optic surface plasmon resonance sensor employing 2D nanomaterials. Appl. Phys. A 2020, 126, 522. [Google Scholar] [CrossRef]
- Ummethala, S.; Harter, T.; Koehnle, K.; Li, Z.; Muehlbrandt, S.; Kutuvantavida, Y.; Kemal, J.; Marin-Palomo, P.; Schaefer, J.; Tessmann, A. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat. Photonics 2019, 13, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Khani, S.; Danaie, M.; Rezaei, P. Hybrid all-optical infrared metal-insulator-metal plasmonic switch incorporating photonic crystal bandgap structures. Photonics 2020, 40, 100802. [Google Scholar] [CrossRef]
- Peale, R.; Figueiredo, P.; Phelps, J.R.; Chan, K.C.; Abdolvand, R.; Smith, E.M.; Vangala, S. Infrared surface-plasmon-resonance attenuator for broadly controllable effective radiant temperature. Infrared Phys. Technol. 2022, 125, 104253. [Google Scholar] [CrossRef]
- Abd-Elkader, A.E.-S.; Hameed, M.F.O.; Areed, N.F.F.; Mostafa, H.E.-D.; Obayya, S.S.A. Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers. JOSA B 2019, 36, 652–661. [Google Scholar] [CrossRef]
- Areed, N.F.F.; El Malt, S.M.; Obayya, S.S.A. Broadband omnidirectional nearly perfect plasmonic absorber for solar energy harvesting. IEEE Photonics J. 2016, 8, 1–18. [Google Scholar] [CrossRef]
- Elrabiaey, M.A.; Areed, N.F.; Obayya, S.S.A. Plasmonic Optical Binary Storage Based on Nematic Liquid Crystal Layers. In Proceedings of the Proc. of PIER, Prague, Czech Republic, 6–9 July 2015; p. 336. [Google Scholar]
- Wu, C.; Guo, Z.; Chen, S.; Yang, J.; Wen, K. Refractive index sensing based on multiple Fano resonances in a plasmonic defective ring-cavity system. Results Phys. 2021, 27, 104508. [Google Scholar] [CrossRef]
- Nurmohammadi, T.; Abbasian, K.; Yadipour, R. Numerical study of dumbbell-shaped gold nanoparticles using in plasmonic waveguides in near infra-red spectrums. Opt. Quantum Electron. 2018, 50, 188. [Google Scholar] [CrossRef]
- Azzam, S.I.; Areed, N.F.; Abd-Elrazzak, M.M.; El-Mikati, H.; Obayya, S.S. Novel symmetric hierarchical mixed finite element analysis for nanophotonic devices. In Proceedings of the 2014 31st National Radio Science Conference (NRSC), Cairo, Egypt, 28–30 April 2014; pp. 341–348. [Google Scholar]
- Islam, M.; Chowdhury, D.R.; Ahmad, A.; Kumar, G. Terahertz plasmonic waveguide based thin film sensor. J. Lightwave Technol. 2017, 35, 5215–5221. [Google Scholar] [CrossRef]
- Lu, L.; Li, F.; Xu, M.; Wang, T.; Wu, J.; Zhou, L.; Su, Y. Mode-selective hybrid plasmonic Bragg grating reflector. IEEE Photonics Technol. Lett. 2012, 24, 1765–1767. [Google Scholar] [CrossRef]
- Zhou, T.; Yang, X.; Chen, M.; Cheng, H.; Guo, Y.; Xie, Y.; Zhang, S.; Xu, J.; Liang, Z. Bragg gratings composed of hollow hybrid plasmonic waveguides with low loss. In Proceedings of the Optoelectronic Devices and Integration IX, SPIE/COS PHOTONICS ASIA, Online, 11–16 October 2020; Volume 11547, p. 1154710. [Google Scholar]
- Du, C.-H.; Chiou, Y.-P. Vertical directional couplers with ultra-short coupling length based on hybrid plasmonic waveguides. J. Lightwave Technol. 2014, 32, 2065–2071. [Google Scholar]
- Park, J.; Kim, K.-Y.; Lee, I.-M.; Na, H.; Lee, S.-Y.; Lee, B. Trapping light in plasmonic waveguides. Opt. Express 2010, 18, 598–623. [Google Scholar] [CrossRef] [PubMed]
- Ebadi, S.M.; Örtegren, J.; Bayati, M.S.; Ram, S.B. A Multipurpose and Highly-Compact Plasmonic Filter Based on Metal-Insulator-Metal Waveguides. IEEE Photonics J. 2020, 12, 4800309. [Google Scholar] [CrossRef]
- Khani, S.; Danaie, M.; Rezaei, P. Plasmonic all-optical metal–insulator–metal switches based on silver nano-rods, comprehensive theoretical analysis and design guidelines. J. Comput. Electron. 2021, 20, 442–457. [Google Scholar] [CrossRef]
- Paul, S.; Ray, M. Multispectral switching using Fano resonance and plasmon-induced transparency in a plasmonic waveguide-coupled resonator system. Plasmonics 2019, 14, 1113–1122. [Google Scholar] [CrossRef]
- Khani, S.; Hayati, M. An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices Microstruct. 2021, 156, 106970. [Google Scholar] [CrossRef]
- Jia, Y.; Song, C.; Liao, Y.; Cai, H. Broadband and Wide-Angle Performance of a Perfect Absorber Using a MIM Structure with 2D MXene. Electronics 2022, 11, 1370. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Li, T.; Huang, C.; Zhang, Y. Composite optical interference in non-unitary and unitary beam-splitter systems. J. Opt. 2021, 50, 495–501. [Google Scholar] [CrossRef]
- Zegaar, I.; Hocini, A.; Harhouz, A.; Khedrouche, D.; Salah, H.B. Design of a Double-Mode Plasmonic Wavelength Filter Using a Defective Circular Nano-Disk Resonator Coupled to Two MIM Waveguides. Prog. Electromagn. Res. Lett. 2022, 104, 67–75. [Google Scholar] [CrossRef]
- Hasan, M.; Mayoa, F.; Hossain, M.S.; Ahmed, R.; Hossain, M.; Ali, K.; Islam, S. Plasmonic corrugated waveguide coupled to a rectangular nano-resonator as an optical filter. OSA Contin. 2020, 3, 3314–3323. [Google Scholar] [CrossRef]
- Negahdari, R.; Rafiee, E.; Emami, F. Design and simulation of a novel nano-plasmonic split-ring resonator filter. J. Electromagn. Waves 2018, 32, 1925–1938. [Google Scholar] [CrossRef]
- Zhuang, T.; Li, S.; Song, G.; Jiang, P.; Yu, L. Tunable band-stop plasmonic waveguide filter with single-sided multiple-teeth-shaped structure. Phys. Scr. 2019, 94, 095602. [Google Scholar] [CrossRef]
- Shafagh, S.G.; Kaatuzian, H.; Danaie, M. Analysis, design and simulation of MIM plasmonic filters with different geometries for technical parameters improvement. Commun. Theor. Phys. 2020, 72, 085502. [Google Scholar] [CrossRef]
- Khatab, H.M.; Areed, N.F.F.; El-Mikati, H.A.; Hameed, M.F.O.; Obayya, S.S.A. Efficient plasmonic line-up filter for sensing applications. Opt. Quantum Electron. 2021, 54, 47. [Google Scholar] [CrossRef]
- Khani, S.; Danaie, M.; Rezaei, P. Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Opt. Commun. 2018, 420, 147–156. [Google Scholar] [CrossRef]
- Dai, J.; Wang, S.; Song, G.; Yu, L.; Wang, L.; Xiao, J. Plasmon-enhanced polarization-selective filter based on multiple holes array filled with nonlinear medium. Mod. Phys. Lett. B 2014, 28, 1450130. [Google Scholar] [CrossRef]
- Qi, Y.; Zhou, P.; Zhang, T.; Zhang, X.; Wang, Y.; Liu, C.; Bai, Y.; Wang, X. Theoretical study of a multichannel plasmonic waveguide notch filter with double-sided nanodisk and two slot cavities. Results Phys. 2019, 14, 102506. [Google Scholar] [CrossRef]
- Zhou, C.; Huo, Y.; Guo, Y.; Niu, Q. Tunable multiple fano resonances and stable plasmonic band-stop filter based on a metal-insulator-metal waveguide. Plasmonics 2021, 16, 1735–1743. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, X.; Zhu, H.; Shen, F. Graphene-based tunable multichannel filter with arithmetic sequence quasiperiodic structure. Optik 2018, 174, 282–288. [Google Scholar] [CrossRef]
- Li, G.; De Sterke, C.M.; Palomba, S. Fundamental limitations to the ultimate Kerr nonlinear performance of plasmonic waveguides. ACS Photonics 2018, 5, 1034–1040. [Google Scholar] [CrossRef]
- Li, G.; de Sterke, C.M.; Palomba, S. Figure of merit for Kerr nonlinear plasmonic waveguides. Laser Photonics Rev. 2016, 10, 639–646. [Google Scholar] [CrossRef]
- Nasari, H.; Abrishamian, M.S. All-optical tunable notch filter by use of Kerr nonlinearity in the graphene microribbon array. JOSA B 2014, 31, 1691–1697. [Google Scholar] [CrossRef]
- Li, J.; Tao, J.; Chen, Z.H.; Huang, X.G. All-optical controlling based on nonlinear graphene plasmonic waveguides. Opt. Express 2016, 24, 22169–22176. [Google Scholar] [CrossRef] [PubMed]
- Heydari, M.B.; Samiei, M.H.V. A short review on graphene-based filters: Perspectives and challenges. arXiv 2020, arXiv:07176. [Google Scholar]
- Kamari, M.; Hayati, M.; Khosravi, S. Tunable infrared wide band-stop plasmonic filter using T-shaped resonators. Mater. Sci. Semicond. Process. 2021, 133, 105983. [Google Scholar] [CrossRef]
- Yin, S.; Liu, Y.J.; Xiao, D.; He, H.; Luo, D.; Jiang, S.; Dai, H.; Ji, W.; Sun, X.W. Liquid-crystal-based tunable plasmonic waveguide filters. J. Phys. D Appl. Phys. 2018, 51, 235101. [Google Scholar] [CrossRef] [Green Version]
- Arianfard, H.; Khajeheian, B.; Ghayour, R. Tunable band (pass and stop) filters based on plasmonic structures using Kerr-type nonlinear rectangular nanocavity. Opt. Eng. 2016, 56, 121902. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, F.; Chen, Y. Tunable Multichannel Plasmonic Filter Based on Coupling-Induced Mode Splitting. Plasmonics 2015, 10, 139–144. [Google Scholar] [CrossRef]
- Xu, H.; Xiao, G.; Xiao, W.; Chen, Q. Tunable multimode plasmonic filter based on asymmetric dual side-coupled U-shape cavities resonators. Optik 2019, 182, 324–330. [Google Scholar] [CrossRef]
- Mittapalli, V.; Khan, H. Excitation schemes of plasmonic angular ring resonator-based band-pass filters using a MIM waveguide. Photonics 2019, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Khani, S.; Danaie, M.; Rezaei, P. Design of a single-mode plasmonic bandpass filter using a hexagonal resonator coupled to graded-stub waveguides. Plasmonics 2019, 14, 53–62. [Google Scholar] [CrossRef]
- Lee, J.; Kim, M.; Park, H.-K.; Kim, I.Y. Motion artifact reduction in wearable photoplethysmography based on multi-channel sensors with multiple wavelengths. Sensors 2020, 20, 1493. [Google Scholar] [CrossRef] [PubMed]
- Zha, S.; Zhang, H.; Sun, C.; Feng, Y.; Lu, J. Multi-Wavelength filters of templated blue phase liquid crystal. Crystals 2019, 9, 451. [Google Scholar] [CrossRef] [Green Version]
- Liao, R.; Tian, H.; Liu, W.; Li, R.; Song, Y.; Hu, M. Dual-comb generation from a single laser source: Principles and spectroscopic applications towards mid-IR—A review. J. Phys. Photonics 2020, 2, 042006. [Google Scholar] [CrossRef]
- Teğin, U.; Rahmani, B.; Kakkava, E.; Psaltis, D.; Moser, C. All-fiber spatiotemporally mode-locked laser with multimode fiber-based filtering. Opt. Express 2020, 28, 23433–23438. [Google Scholar] [CrossRef]
- Shapiro, E.G.e.; Shapiro, D.A. Suppression of nonlinear distortion in a high-speed multichannel communication line with variable quadratic dispersion compensation. Quantum Electron. 2021, 51, 635. [Google Scholar] [CrossRef]
- Rafiee, E.; Negahdari, R.; Emami, F. Plasmonic multi channel filter based on split ring resonators: Application to photothermal therapy. Photonics Nanostructures-Fundam. Appl. 2019, 33, 21–28. [Google Scholar] [CrossRef]
- Fallahi, V.; Seifouri, M.; Mohammadi, M. A new design of optical add/drop filters and multi-channel filters based on hexagonal PhCRR for WDM systems. Photonic Netw. Commun. 2019, 37, 100–109. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, H.; Singh, P. Mitigation of FWM in the Fiber Optic DWDM System by using Different Modulation Techniques and Optical Filters. In Proceedings of the 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020; pp. 343–348. [Google Scholar]
- Yu, J.; Li, X.; Zhou, W. Tutorial: Broadband fiber-wireless integration for 5G+ communication. Apl. Photonics 2018, 3, 111101. [Google Scholar] [CrossRef] [Green Version]
- Barchiesi, D.; Grosges, T. Fitting the optical constants of gold, silver, chromium, titanium, and aluminum in the visible bandwidth. J. Nanophotonics 2014, 8, 083097. [Google Scholar] [CrossRef] [Green Version]
- Hao, F.; Nordlander, P. Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles. Chem. Phys. Lett. 2007, 446, 115–118. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.-W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Kauranen, M.; Zayats, A.V. Nonlinear plasmonics. Nat. Photonics 2012, 6, 737–748. [Google Scholar] [CrossRef]
- Arivuoli, D. Fundamentals of nonlinear optical materials. Pramana 2001, 57, 871–883. [Google Scholar] [CrossRef]
- Yamazoe, Y.; Nishino, T.; Hamakawa, Y.; Kariya, T. Bandgap Energy of InGaAsP Quaternary Alloy. Jpn. J. Appl. Phys. 1980, 19, 1473–1479. [Google Scholar] [CrossRef]
- Rajarajan, M.; Obayya, S.S.A.; Rahman, B.A.; Grattan, K.T.; El-Mikati, H.A. Design of compact optical bends with a trench by use of finite-element and beam-propagation methods. Appl. Opt. 2000, 39, 4946–4953. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Anwar, N.; Obayya, S.S.A.; Haxha, S.; Themistos, C.; Rahman, B.; Grattan, K.T. The effect of fabrication parameters on a ridge Mach-Zender interferometric (MZI) modulator. J. Lightwave Technol. 2002, 20, 854–861. [Google Scholar] [CrossRef]
- Chou Chau, Y.-F.; Chou Chao, C.-T.; Huang, H.J.; Kooh, M.R.R.; Kumara, N.T.R.N.; Lim, C.M.; Chiang, H.-P. Ultrawide Bandgap and High Sensitivity of a Plasmonic Metal-Insulator-Metal Waveguide Filter with Cavity and Baffles. Nanomaterials 2020, 10, 2030. [Google Scholar] [CrossRef]
- Han, Z.; He, S. Two-dimensional model for three-dimensional index-guided multimode plasmonic waveguides and the design of ultrasmall multimode interference splitters. Appl. Opt. 2007, 46, 6223–6227. [Google Scholar] [CrossRef] [PubMed]
- Shibayama, J.; Kawai, H.; Yamauchi, J.; Nakano, H. Analysis of a 3D MIM waveguide-based plasmonic demultiplexer using the TRC-FDTD method. Opt. Commun. 2019, 452, 360–365. [Google Scholar] [CrossRef]
- Haus, H. Waves and fields in optoelectronics. Prenctice-Hall. Inc. Englewood Cliffs NJ 1984, 7632, 208. [Google Scholar]
- Chen, Z.; Chen, J.; Li, Y.; Qian, J.; Qi, J.; Xu, J.; Sun, Q. Highly efficient narrow-band plasmonic waveguide filter based on cascaded slot cavities. Chin. Opt. Lett. 2013, 11, 112401. [Google Scholar] [CrossRef]
- Lu, H.; Yue, Z.; Zhao, J. Multiple plasmonically induced transparency for chip-scale bandpass filters in metallic nanowaveguides. Opt. Commun. 2018, 414, 16–21. [Google Scholar] [CrossRef]
- Gu, P.; Zhang, W.; Zhang, G. Plasmonic nanogaps: From fabrications to optical applications. Adv. Mater. Interfaces 2018, 5, 1800648. [Google Scholar] [CrossRef]
- Jung, J. Optimal design of plasmonic waveguide with fabrication tolerance. Opt. Commun. 2017, 395, 139–146. [Google Scholar] [CrossRef]
Parameters | Symbol | Values | Unit |
---|---|---|---|
Bus width | W | 50 | nm |
Coupling distance between up and down arrows’ cavities | D | 200 | nm |
Arrow side length | dS | 250 | nm |
Arrow width | wA | 50 | nm |
Angle of the arrow | θ | 45 | degree |
Centre length | dC | 150 | nm |
Element Size | No. of Elements | Normalized Trans. Power At | ||
---|---|---|---|---|
λ = 540 nm | λ = 760 nm | λ = 860 nm | ||
Extremely Fine | 526 | 0.48 | 0.003 | 0.74 |
Extra Fine | 456 | 0.48 | 0.003 | 0.73 |
Finer | 410 | 0.48 | 0.003 | 0.65 |
Normal | 382 | 0.48 | 0.008 | 0.51 |
Extra Coarse | 324 | 0.49 | 0.009 | 0.45 |
D (nm) | λ (nm) Peak | Power η (%) | Q-Factor for Pass Channels (>50%) |
---|---|---|---|
0 | 460 | 17 | NA |
540 | 48 | NA | |
860 | 74 | 21.5 | |
100 | 440 | 57 | 33.8 |
560 | 64 | 12.4 | |
880 | 79.9 | 16 | |
200 | 420 | 29 | NA |
540 | 58 | 30 | |
680 | 75 | 11.3 | |
900 | 85 | 12 | |
600 | 460 | 23 | NA |
540 | 59 | 36 | |
620 | 74 | 9.5 | |
860 | 78 | 7.8 with centered λ = 900 nm | |
940 | 87 |
Light Intensities (v2/m2) | Pass wavelengths λ (nm) | Trans. η % | FWHM (nm) | Q-Factor |
---|---|---|---|---|
e0 = 0 | 640, 800 | 67, 85 | 55, 100 | 11.6, 8 |
e1 = 1017 | 700, 860 | 74, 86 | 50, 110 | 14, 7.8 |
e1 = 2 × 1017 | 740, 920 | 83, 87 | 50, 145 | 14.8, 6.3 |
Ref. | λ (nm) | Max. Power (η %) | Q-Factor of Each Pass λ | Tunability Method |
---|---|---|---|---|
[69] | 880 1550 | 55 89 | 12 25 | Fixed |
[43] | 700 882 | 70 50 | NA | Changing geometric parameters |
[41] | 775 1225 | 70 50 | NA | Electrically Using LC With average sensitivity of 65 nm/RIU |
[70] | 845 900 1084 | 58 85 85 | NA | Fixed |
[44] | 1002 1093 | 75 65 | NA | Changing geometric parameters |
[18] | 1267 1414 1644 | 69 79 78 | 26 16 17 | Changing geometric parameters |
This work | 640 700 800 860 | 67 74 85 86 | 12 14 8 8 | Optically using InGaAsP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd-Elsamee, S.; Areed, N.F.F.; El-Mikati, H.A.; Obayya, S.S.A. Tunable Multi-Channels Bandpass InGaAsP Plasmonic Filter Using Coupled Arrow Shape Cavities. Photonics 2022, 9, 720. https://doi.org/10.3390/photonics9100720
Abd-Elsamee S, Areed NFF, El-Mikati HA, Obayya SSA. Tunable Multi-Channels Bandpass InGaAsP Plasmonic Filter Using Coupled Arrow Shape Cavities. Photonics. 2022; 9(10):720. https://doi.org/10.3390/photonics9100720
Chicago/Turabian StyleAbd-Elsamee, Seham, Nihal F. F. Areed, Hamdi A. El-Mikati, and Salah S. A. Obayya. 2022. "Tunable Multi-Channels Bandpass InGaAsP Plasmonic Filter Using Coupled Arrow Shape Cavities" Photonics 9, no. 10: 720. https://doi.org/10.3390/photonics9100720
APA StyleAbd-Elsamee, S., Areed, N. F. F., El-Mikati, H. A., & Obayya, S. S. A. (2022). Tunable Multi-Channels Bandpass InGaAsP Plasmonic Filter Using Coupled Arrow Shape Cavities. Photonics, 9(10), 720. https://doi.org/10.3390/photonics9100720