Blind Carrier Phase Recovery Using Extended Kalman Filtering in Probabilistically Shaped Coherent Systems
Abstract
:1. Introduction
2. Principle
2.1. Probabilistic Shaping and System Model
2.2. Principle of EKF-PC
2.3. Computational Complexity
3. Numerical Investigation
3.1. Optimization of Noise Rejection Window N at Fixed SNR
3.2. Comparison of EKF-PC with Variable SFs and Linewidths
4. Simulation Setup and Results
4.1. Performance of EKF-PC with Variable SFs and SNRs
4.2. NGMI Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
QAM | Quadrature amplitude modulation |
DSP | Digital signal processing |
AWGN | Additive white Gaussian noise |
NLPN | Non-Linear Phase Noise |
CPE | Carrier phase estimation |
CPR | Carrier phase recovery |
QPSK | Quadrature phase shift keying |
BPS | Blind phase search |
CS | Cycle slip |
PS | Probabilistic shaping |
SNR | Signal-to-noise rate |
FEC | Forward error correction |
MI | Mutual information |
GMI | Generalized mutual information |
NGMI | Normalized generalized mutual information |
DD | Decision-Directed |
SF | Shaping factor |
LW | Linewidth |
LUT | Lookup table |
AIR | Achievable information rate |
RRC | Root-raised cosine |
LMS | Least-mean-square algorithm |
PCPE | Principal component-based phase estimation |
References
- Böcherer, G.; Steiner, F.; Schulte, P. Bandwidth efficient and rate-matched low-density parity-check coded modulation. IEEE Trans. Commun. 2015, 63, 4651–4665. [Google Scholar] [CrossRef] [Green Version]
- Pilori, D.; Bertignono, L.; Nespola, A.; Forghieri, F.; Bosco, G. Comparison of probabilistically shaped 64QAM with lower cardinality uniform constellations in long-haul optical systems. J. Lightw. Technol. 2018, 36, 501–509. [Google Scholar] [CrossRef] [Green Version]
- Fatadin, I.; Ives, D. Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning. IEEE Photonics Technol. Lett. 2010, 22, 631–633. [Google Scholar] [CrossRef]
- Rozental, V.; Kong, D.; Corcoran, B.; Mello, D.A.A.; Lowery, A.J. Filtered carrier phase estimator for high-order QAM optical systems. J. Lightw. Technol. 2018, 36, 2980–2993. [Google Scholar] [CrossRef]
- Rozental, V.N.; Kong, D.; Foo, B.; Corcoran, B.; Lowery, A.J. Cycle-slip-less low-complexity phase recovery algorithm for coherent optical receivers. Opt. Lett. 2017, 42, 3554–3557. [Google Scholar] [CrossRef] [PubMed]
- Pfau, T.; Hoffmann, S.; Noé, R. Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations. J. Lightw. Technol. 2009, 27, 989–999. [Google Scholar] [CrossRef]
- Chen, Z.; Fu, S.; Tang, M.; Zhang, Z.; Qin, Y. Maximum probablity directed blind phase search for PS-QAM with variable shaping factors. Opt. Express 2022, 30, 550–562. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chen, L. Carrier phase recovery based on KL divergence in probabilistically shaped coherent systems. J. Lightw. Technol. 2021, 39, 2684–2695. [Google Scholar] [CrossRef]
- Mello, D.A.A.; Barbosa, F.A.; Reis, J.D. Interplay of probabilistic shaping and the blind phase search algorithm. J. Lightw. Technol. 2018, 36, 5096–5105. [Google Scholar] [CrossRef] [Green Version]
- Diniz, J.C.M.; Fan, Q.; Ranzini, S.M.; Khan, F.N.; Da Ros, F.; Zibar, D.; Lau, A.P.T. Low-complexity carrier phase recovery based on principal component analysis for square-QAM modulation formats. Opt. Lett. 2019, 17, 15617–15626. [Google Scholar] [CrossRef]
- Pakala, L.; Schmauss, B. Extended Kalman filtering for joint mitigation of phase and amplitude noise in coherent QAM systems. Opt. Express 2016, 24, 6391–6401. [Google Scholar] [CrossRef]
- Liu, S.; Xu, X.; Guo, M.; Tang, X.; Liu, S.; Lu, Y.; Qiao, Y. A pilot-symbols-aided unscented Kalman filter for carrier phase recovery in the wide-linewidth short-range coherent optical transmission systems. Opt. Fiber Technol. 2020, 56, 102208. [Google Scholar] [CrossRef]
- Zhao, J. Format-transparent phase estimation based on KL divergence in coherent optical systems. Opt. Express 2020, 28, 20016–20031. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, F.A.; Rossi, S.M.; Mello, D.A.A. Phase and frequency recovery algorithms for probabilistically shaped transmission. J. Lightw. Technol. 2019, 38, 1827–1835. [Google Scholar] [CrossRef]
- Cho, J.; Schmalen, L.; Winzer, P.J. Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM. In Proceedings of the 2017 European Conference on Optical Communication (ECOC), Gothenburg, Sweden, 17–21 September 2017. [Google Scholar]
- Cho, J.; Winzer, P.J. Probabilistic constellation shaping for optical fiber communications. J. Lightw. Technol. 2019, 37, 1590–1607. [Google Scholar] [CrossRef]
- Ip, E.; Kahn, J.M. Feedforward carrier recovery for coherent optical communications. J. Lightw. Technol. 2007, 25, 2675–2692. [Google Scholar] [CrossRef]
- Essiambre, R.J.; Kramer, G.; Winzer, P.J.; Foschini, G.J.; Goebel, B. Capacity limits of optical fiber networks. J. Lightw. Technol. 2010, 28, 662–701. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Tao, Z.; Hoshida, T.; Rasmussen, J.C. Laser-linewidth-tolerant feed-forward carrier phase estimator with reduced complexity for QAM. J. Lightw. Technol. 2011, 29, 2358–2364. [Google Scholar] [CrossRef]
- Gené, J.M.; Chen, X.; Cho, J.; Chandrasekhar, S.; Winzer, P. Experimental demonstration of widely tunable rate/reach adaptation from 80 km to 12,000 km using probabilistic constellation shaping. In Proceedings of the Optical Fiber Communication Conference 2020, San Diego, CA, USA, 8–12 March 2020. [Google Scholar]
- Schulte, P.; Böcherer, G. Constant composition distribution matching. IEEE Trans. Inf. Theory 2016, 62, 430–434. [Google Scholar] [CrossRef]
- Li, L.; Feng, Y.; Zhang, W.; Cui, N.; Xu, H.; Tang, X.; Xi, L.; Zhang, X. Extended Kalman filter for carrier frequency offset and carrier phase noise. In Proceedings of the 2017 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 14–19 May 2017. [Google Scholar]
2-Stage BPS | PCPE | MPD-BPS | UKF | EKF-PC | |
---|---|---|---|---|---|
ADD | |||||
MULT | |||||
Square root | 0 | 1 | 0 | 0 | 0 |
LUT | 3 | N | |||
Decision | 0 | N | N | N | |
Comparison | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Yan, J.; Huang, Z. Blind Carrier Phase Recovery Using Extended Kalman Filtering in Probabilistically Shaped Coherent Systems. Photonics 2022, 9, 719. https://doi.org/10.3390/photonics9100719
Zhang S, Yan J, Huang Z. Blind Carrier Phase Recovery Using Extended Kalman Filtering in Probabilistically Shaped Coherent Systems. Photonics. 2022; 9(10):719. https://doi.org/10.3390/photonics9100719
Chicago/Turabian StyleZhang, Shiqun, Jiarun Yan, and Zhiping Huang. 2022. "Blind Carrier Phase Recovery Using Extended Kalman Filtering in Probabilistically Shaped Coherent Systems" Photonics 9, no. 10: 719. https://doi.org/10.3390/photonics9100719
APA StyleZhang, S., Yan, J., & Huang, Z. (2022). Blind Carrier Phase Recovery Using Extended Kalman Filtering in Probabilistically Shaped Coherent Systems. Photonics, 9(10), 719. https://doi.org/10.3390/photonics9100719