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Abstract

:

A new design for a tunable multi-channel plasmonic bandpass filter was numerically investigated using the two-dimensional finite element method (2D-FEM). The proposed multi-channel plasmonic bandpass filter consists of a metal-insulator-metal waveguide (MIM-WG) and double-sided arrow-shaped cavities. Silver (Ag) and a non-linear optical medium (InGaAsP) are used in the designed filter. InGaAsP fills the bus waveguide and arrow-shaped cavities. The refractive index of InGaAsP is sensitive to the incident light intensity, therefore the resonance wavelengths can be controlled. Utilizing different incident light intensities (such as 1017 v2/m2 and 2 × 1017 v2/m2) on the InGaAsP, the filter wavelengths can be tuned over a range from 600 nm to 1200 nm. The proposed filter with a confinement area of 0.5 μm2 can be used in wavelength division multiplexing (WDM), photonic systems, coloring filters, sensing, and 5G+ communication.
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1. Introduction


Plasmonics is a quickly expanding research field that manipulates electronic excitations at the metal–dielectric interface. These excitations produce electromagnetic oscillations called surface plasmon polaritons, SPPs [1,2]. These SPP oscillations are confined in the metal–dielectric interface, resulting in significant light–matter interactions beyond the diffraction limit of light. An SPP acts as a microscopic optical waveguide, therefore it is called a plasmonic waveguide. Plasmonic waveguides carry both optical and electrical pulses at the same time, which opens up new opportunities [3,4,5,6,7,8,9]. Recently, numerous plasmonic waveguides (PWGs) have been studied with different structural designs, such as chains of nanoparticles [10,11,12], metal films [13], metal groove hybrid Bragg waveguides [14,15], metal-insulator-metal (MIM) slabs [2], and insulator-metal-insulator IMI slabs [16,17]. The MIM structure is suitable and attractive for on-chip integration due to its strong light confinement with significant propagation [18] and it is easy for recent fabrication technologies. As a result, different devices based on MIM waveguides have been studied, such as optical switches [19,20], sensors [21], absorbers [22], optical splitters [23], and optical filters [24].



Plasmonic filters play a role in telecommunication applications due to their frequency-selectivity. In recent years, a variety of plasmonic filters have been studied, including rectangular-shaped filters [25], ring-shaped filters [26], teeth-shaped filters [27], triangular-shaped filters [28], line up filters [29], Nano disk-shaped filters [30], and polarization filters [31]. However, these plasmonic systems only have one filtering channel. A few designs for multi-channel plasmonic filters have been studied, such as multichannel notch/bandstop filters [32,33] and multichannel bandpass filters [34]. These designs have fixed/unchangeable filtering channels in their optical spectra.



Non-linear optical materials control the optical signal in plasmonic devices, due to their ultrafast response time and high bandwidth with low energy consumption [35,36]. Tunable filters have been developed using non-linear materials, such as graphene [37,38,39], InGaAsP [40], liquid crystal [41], and Au:SiO2 [42].



Therefore, in this paper, we introduce for the first time arrow-shaped plasmonic cavities that can produce a multi-channel bandpass filter. The proposed arrow shape has a better transmission power efficiency than rectangular cavities [43], U-shape cavities [44], angular ring cavities [45], hexagonal cavities [46], and symmetric stub cavities [18]. The proposed multi-channel plasmonic bandpass filter was numerically analyzed using the two-dimensional finite element method (2D FEM: COMSOL Multiphysics). The variation in the coupling distance between the arrows leads to the broadening of the transmitted channels of the plasmonic bandpass filter. To develop a tunable multi-channel bandpass filter, the dielectric material “Air” has been filled by a nonlinear optical material (InGaAsP). The dielectric characteristic of that medium is varied due to the intensity variation in the falling light on it. The proposed tunable multi-channel bandpass plasmonic filter can be used in optical signal processing [47], color filters [48], multi-wavelength fiber lasers [49,50], multichannel dispersion compensators [51], photo-thermal therapy [52], optical WDM systems [53,54], and fiber-wireless integration for 5G+ communication [55].




2. Structure, Materials, and Method


Our design process started with a geometrical study of the single stub resonator dimensions (stub length, stub width, and stub rotation angle) on a target band of wavelengths (visible and near-infrared). Figure 1 illustrates the relationship between the single stub dimensions and the notch wavelength. As observed in Figure 1a,b, the notch wavelength shifts between blue and red as the stub width and length increase, respectively. Additionally, as shown in Figure 1c, the stub angle variation affects the number of notch wavelengths. Therefore, to work in the visible and near-infrared band, the optimum values of the stub width and length must be in the range of 50 nm:100 nm and 150 nm:250 nm, respectively. Finally, three stubs with different rotation angles (45°, 90°, 135°) are merged into an arrow shape to form the multiple channels of the bandpass filter.



2.1. Structure of Multi-Channel Bandpass Filter (Fixed & Tunable)


The proposed multi-channel bandpass filter consists of a MIM-WG coupled with arrow-shaped cavities, as seen in Figure 2. The up and down arrows are separated by a coupling distance “D”. A parametric analysis has been used to identify the optimum values of the filter geometry to obtain a high transmission efficiency (see Table 1).




2.2. Materials


As shown in Figure 2:




	
Fixed channels bandpass filter materials are air (insulator medium fills the bus waveguide and dual arrow-shaped cavities) and silver (Ag metal medium). Silver has been selected because it is a dominant conductor in the optical and near-infrared range. The silver permittivity must be determined when studying the filter wavelength response over the desired band. Many analytical models are used to represent the optical properties of the metallic nanoparticles. However, all these models were developed to fit the experimental data (Johnson and Christy). However, the number of parameters, which are used for fitting the experimental data, can affect the accuracy of the simulation results [56,57]. Since there are no reliable models for nanomaterials, the measurements by Johnson and Christy are preferable for expressing silver permittivity (εm) in the visible range [56,58].



	
Tunable channels bandpass filter materials are: non-linear optical (NLO) material [59] and silver. The refractive index of NLO materials is sensitive to the intensity of the incident light, which is why the resonance wavelengths can be controlled without changing the outer size of the structure. InGaAsP is one of the top-tier NLO materials because of its chemical stability, high optical damage threshold, ease of attainment in crystalline form, broad operating ranges of wavelength and temperature, and conversion efficiency [60]. InGaAsP fills the bus waveguide and dual arrow-shaped cavities. The equation of nonlinear dielectric constant, εd, for InGaAsP is as follows [40]:


εd = εL + χ(3) |E|2



(1)




where εL is the linear dielectric constant, which is adjusted at 2.25; χ(3) denotes third-order nonlinear susceptibility which reads 4 × 10−18 m2/V2; and |E|2 is the intensity of the incident light that changes the properties of InGaAsP. According to Equation (1), the permittivity of InGaAsP has been modified locally to be 2.65 and 3.05 when changing the incident light intensity from 1017 v2/m2 to 2 × 1017 v2/m2, respectively. Infrared wavelength LED and laser diode at λ ~ 1.3 μm can be used to illuminate the NLO material (InGaAsP) [61].









2.3. Numerical Method


A two-dimensional finite element method (2D FEM) [62,63,64] (COMSOL Multiphysics Version 5.5) is used to calculate the propagation properties of the depicted structure in Figure 2. Two-dimensional model (2D) is selected rather than three dimensional (3D) model since both models will obtain the same simulation results; on top of that, it is simpler and requires fewer computing resources [65]. However, to ensure that the filter performance is going well with the simulation results, the Ag metal thickness in the z direction is much longer than in the x and y directions [66]. Inspired by [67], the thickness of the metal layer (Ag) in our design is preferred to be more than 15% of the working wavelength. TM-polarized incident light is used to excite the SPP mode at the input port, as seen in Figure 2b. To achieve numerical convergence, the variations of the normalized transmitted power have been studied for three different wavelengths (λ = 540 nm, 760 nm, and 860 nm) with different mesh sizes. Table 2 shows the statistics of that study. So, for numerical convergence, this structure must be discretized in the x and y directions using:




	
A quadratic shape function.



	
“Extremely fine” mesh element size with the total number of elements = 526.










3. Numerical Results


3.1. Fixed Multi-Channel Bandpass Filter


Figure 3 shows the transmission spectra of the proposed filter with a different coupling distance “D” between the double arrow shape. The value of “D” controls the constructive/destructive interference of waves between the arrow resonators and the bus waveguide [68]. This interference between waves must be in phases to cause transmission peaks. We also observed that as the coupling distance continues to rise, multiple discrete transmission bands interfered, causing a broadening in its bandwidth. Table 3 summarizes the filter characteristics with the different values of the coupling distance.




3.2. Tunable Multi-Channel Bandpass Filter Based InGaAsP


As shown in Figure 4a, a red shift in the transmission wavelengths occurs as the incident light intensity is increased. Figure 4b clarifies the direct positive relationship between the transmission wavelengths and the illuminated light intensity. Table 4 summarizes the filter transmission characteristics through three light intensities. Based on the previous results, we can shift all of the transmission wavelengths by changing the light intensity. Figure 5 displays the field distribution of the Hz component through two values of the light intensity.





4. Discussion


From the above results:




	
A triple-channel bandpass filter with a high transmission efficiency and narrow bandwidth can be designed by selecting the value of the coupling distance to be 100 nm.



	
A triple-channel bandpass filter with a high transmission efficiency and wide bandwidth, can be designed by selecting the value of the coupling distance to be more than 200 nm.



	
A tunable multi-channel bandpass filter with high transmission peaks can be controlled over a range from 600 nm to 1200, thanks to InGaAsP.








We compare the characteristics of the proposed tunable multi-channel bandpass filter with other previous work, as seen in Table 5. According to this table, the proposed multi-channel bandpass filter has the highest number of passed channels and the highest power efficiency (two of them reach 85%). This tunable multi-channel bandpass filter can work as a wavelength division multiplexing (WDM) device due to its compact size and simple construction.



The fabrication process of the proposed structure with minimum dimensions of 50 nm is the next challenge. The oblique angle shadow evaporation technique has numerous uses in optical trapping (filtering), surface-enhanced spectroscopy, and sensing, so it can be used to fabricate structures similar to the proposed multi-channel bandpass filter [71], by suspending the mask above the substrate and adjusting the deposition angle to be oblique to the normal surface. The fabrication tolerances must be taken into the account since the geometry of the nano-scaled plasmonic waveguide is insensitive to fabrication errors [72]. The fabrication tolerance of the proposed tunable multi-channel bandpass filter was tested by changing the value of the angle “θ “and the sharp edges. All the sharp edges are slightly curved by radius “R” to be easy for fabrication, as seen in Figure 6a. The variation in the first factor “θ “on the performance of the proposed filter is shown in Figure 6b. It has been observed that any angle deviation within the range of ±2o will have little impact on the filter transmission efficiency, which demonstrates good tolerance and stability. The second impact factor “R”, which affects the performance of the proposed filter, is shown in Figure 6c. It is observed that the edges with radius R < 4 nm have a slightly blue shift in the transmitted wavelengths. This blue shift can be ignored to achieve a simple fabrication process for the proposed filter. Additionally, the variation in the pump light field distribution has been considered a third fabrication tolerance factor, because it may lead to a non-homogeneous tuning of the index distribution within the structure of the waveguide. Therefore, the transmission spectrum has been recalculated while the light intensities of the vertical stub resonators (up/down) and bus waveguide are different from those of the slanted stub resonators (left/right, up/down), as seen in Figure 6d. It has been observed that a blue shift (tiny shift of 30 nm) in the resonance wavelengths happens when the index of the nonlinear material has two different intensities of the pumping light at the same time within the structure. Since the average difference between the resonance wavelengths for a homogeneous and nonhomogeneous pump light field distribution is only 4%, this will not affect the performance and it is relatively acceptable.




5. Conclusions


This study produces a new shape of the multi-channel plasmonic bandpass filter. This filter consists of up and down arrow-shaped cavities coupled with an MIM waveguide. The multichannel bandpass filter provides three passed channels with a good Q-factor and power efficiency. These cavities are filled with a nonlinear optical material (InGaAsP) with a minimum width of 50 nm. The refractive index of the InGaAsP material is sensitive to the intensity of the incident light, which is why the resonance wavelengths can be controlled without changing the outer size of the structure. These light intensities tuned the wavelengths over the range from 600 nm to 1200 nm. The suggested filter demonstrates a good tolerance and stability for the angle deviations within the range of ±2°. Additionally, to obtain a friendly fabrication process for the proposed filter, all the sharp edges can be slightly curved within a radius value of 4 nm. The designed tunable multi-channel bandpass filter can play a role in WDM photonic systems which operate in the visible and near-IR band.
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Figure 1. The relationship between the stub dimensions and the notch wavelength (a) stub width, (b) stub length, and (c) stub rotation angle. 
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Figure 2. (a) Schematic diagram of the proposed plasmonic multi-channel bandpass filter structure with geometrical parameters found in Table 1; (b) Incident TM-mode field distribution with λ = 600 nm. 
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Figure 3. Transmission spectra with different coupling distance between two plasmonic arrows: (a) D = 0 nm, (b) D = 100 nm, (c) D = 200 nm, and (d) D = 600 nm. 
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Figure 4. (a) Transmission spectra with different dielectric mediums; (b) Relation between the light intensity exposed to the NLO (InGaAsP) and the resonance wavelengths. 
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Figure 5. Magnetic field Hz distribution with different light intensities exposed to non-linear dielectric material (InGaAsP): (a) light intensity e0 = 0 (v2/m2), (b) light intensity e0 = 1017 (v2/m2). 
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Figure 6. Fabrication tolerance due to the variation in angle “θ”, the radius of the curved edge “R”, and the pump light field distribution. (a) 3D sketch model for the proposed tunable multi-channel ban-pass filter; (b) variation in angle “θ” Note: Every line (light intensity e0) corresponds to one of the three passing wavelength channels, and the colored dots for each line indicate the variations in transmission efficiency values; (c) transmission spectrum with different curved edges “R”; (d) the variation in the pump light field distribution within the structure of the waveguide. Inset: the different refractive indices of the NLO material due to the non-homogenous pump light field distribution. 
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Table 1. Dimensions of the proposed plasmonic multi-channel bandpass filter (up and down arrows are identical in geometry size).
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	Parameters
	Symbol
	Values
	Unit





	Bus width
	W
	50
	nm



	Coupling distance between up and down arrows’ cavities
	D
	200
	nm



	Arrow side length
	dS
	250
	nm



	Arrow width
	wA
	50
	nm



	Angle of the arrow
	θ
	45
	degree



	Centre length
	dC
	150
	nm
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Table 2. Statistics of mesh size.






Table 2. Statistics of mesh size.





	
Element Size

	
No. of Elements

	
Normalized Trans. Power At




	
λ = 540 nm

	
λ = 760 nm

	
λ = 860 nm






	
Extremely Fine

	
526

	
0.48

	
0.003

	
0.74




	
Extra Fine

	
456

	
0.48

	
0.003

	
0.73




	
Finer

	
410

	
0.48

	
0.003

	
0.65




	
Normal

	
382

	
0.48

	
0.008

	
0.51




	
Extra Coarse

	
324

	
0.49

	
0.009

	
0.45
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Table 3. Filter characteristics with various coupling distances between two arrow resonators (values extracted from Figure 3).






Table 3. Filter characteristics with various coupling distances between two arrow resonators (values extracted from Figure 3).





	
D (nm)

	
λ (nm)

Peak

	
Power η (%)

	
Q-Factor for Pass Channels (>50%)






	
0

	
460

	
17

	
NA




	
540

	
48

	
NA




	
860

	
74

	
21.5




	
100

	
440

	
57

	
33.8




	
560

	
64

	
12.4




	
880

	
79.9

	
16




	
200

	
420

	
29

	
NA




	
540

	
58

	
30




	
680

	
75

	
11.3




	
900

	
85

	
12




	
600

	
460

	
23

	
NA




	
540

	
59

	
36




	
620

	
74

	
9.5




	
860

	
78

	
7.8 with centered λ = 900 nm




	
940

	
87
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Table 4. Filter transmission characteristics through the variation in light intensity exposed to InGaAsP.
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	Light Intensities

(v2/m2)
	Pass wavelengths

λ (nm)
	Trans.

η %
	FWHM

(nm)
	Q-Factor





	e0 = 0
	640, 800
	67, 85
	55, 100
	11.6, 8



	e1 = 1017
	700, 860
	74, 86
	50, 110
	14, 7.8



	e1 = 2 × 1017
	740, 920
	83, 87
	50, 145
	14.8, 6.3
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Table 5. Comparison between the proposed tunable multichannel bandpass filter and previous works.
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	Ref.
	λ

(nm)
	Max. Power

(η %)
	Q-Factor of Each Pass λ
	Tunability Method





	[69]
	880

1550
	55

89
	12

25
	Fixed



	[43]
	700

882
	70

50
	NA
	Changing geometric parameters



	[41]
	775

1225
	70

50
	NA
	Electrically

Using

LC

With average sensitivity of 65 nm/RIU



	[70]
	845

900

1084
	58

85

85
	NA
	Fixed



	[44]
	1002

1093
	75

65
	NA
	Changing geometric parameters



	[18]
	1267

1414

1644
	69

79

78
	26

16

17
	Changing geometric parameters



	This work
	640

700

800

860
	67

74

85

86
	12

14

8

8
	Optically using InGaAsP
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