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Abstract: A new design for a tunable multi-channel plasmonic bandpass filter was numerically
investigated using the two-dimensional finite element method (2D-FEM). The proposed multi-
channel plasmonic bandpass filter consists of a metal-insulator-metal waveguide (MIM-WG) and
double-sided arrow-shaped cavities. Silver (Ag) and a non-linear optical medium (InGaAsP) are used
in the designed filter. InGaAsP fills the bus waveguide and arrow-shaped cavities. The refractive
index of InGaAsP is sensitive to the incident light intensity, therefore the resonance wavelengths can
be controlled. Utilizing different incident light intensities (such as 1017 v2/m2 and 2 × 1017 v2/m2)
on the InGaAsP, the filter wavelengths can be tuned over a range from 600 nm to 1200 nm. The
proposed filter with a confinement area of 0.5 µm2 can be used in wavelength division multiplexing
(WDM), photonic systems, coloring filters, sensing, and 5G+ communication.

Keywords: plasmonic waveguide; multichannel wavelength bandpass filter; nonlinear optical
material; InGaAsP

1. Introduction

Plasmonics is a quickly expanding research field that manipulates electronic excitations
at the metal–dielectric interface. These excitations produce electromagnetic oscillations
called surface plasmon polaritons, SPPs [1,2]. These SPP oscillations are confined in the
metal–dielectric interface, resulting in significant light–matter interactions beyond the
diffraction limit of light. An SPP acts as a microscopic optical waveguide, therefore it is
called a plasmonic waveguide. Plasmonic waveguides carry both optical and electrical
pulses at the same time, which opens up new opportunities [3–9]. Recently, numerous
plasmonic waveguides (PWGs) have been studied with different structural designs, such
as chains of nanoparticles [10–12], metal films [13], metal groove hybrid Bragg waveg-
uides [14,15], metal-insulator-metal (MIM) slabs [2], and insulator-metal-insulator IMI
slabs [16,17]. The MIM structure is suitable and attractive for on-chip integration due
to its strong light confinement with significant propagation [18] and it is easy for recent
fabrication technologies. As a result, different devices based on MIM waveguides have been
studied, such as optical switches [19,20], sensors [21], absorbers [22], optical splitters [23],
and optical filters [24].

Plasmonic filters play a role in telecommunication applications due to their frequency-
selectivity. In recent years, a variety of plasmonic filters have been studied, including
rectangular-shaped filters [25], ring-shaped filters [26], teeth-shaped filters [27], triangular-
shaped filters [28], line up filters [29], Nano disk-shaped filters [30], and polarization
filters [31]. However, these plasmonic systems only have one filtering channel. A few
designs for multi-channel plasmonic filters have been studied, such as multichannel
notch/bandstop filters [32,33] and multichannel bandpass filters [34]. These designs have
fixed/unchangeable filtering channels in their optical spectra.
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Non-linear optical materials control the optical signal in plasmonic devices, due to
their ultrafast response time and high bandwidth with low energy consumption [35,36].
Tunable filters have been developed using non-linear materials, such as graphene [37–39],
InGaAsP [40], liquid crystal [41], and Au:SiO2 [42].

Therefore, in this paper, we introduce for the first time arrow-shaped plasmonic
cavities that can produce a multi-channel bandpass filter. The proposed arrow shape has a
better transmission power efficiency than rectangular cavities [43], U-shape cavities [44],
angular ring cavities [45], hexagonal cavities [46], and symmetric stub cavities [18]. The
proposed multi-channel plasmonic bandpass filter was numerically analyzed using the
two-dimensional finite element method (2D FEM: COMSOL Multiphysics). The variation
in the coupling distance between the arrows leads to the broadening of the transmitted
channels of the plasmonic bandpass filter. To develop a tunable multi-channel bandpass
filter, the dielectric material “Air” has been filled by a nonlinear optical material (InGaAsP).
The dielectric characteristic of that medium is varied due to the intensity variation in the
falling light on it. The proposed tunable multi-channel bandpass plasmonic filter can be
used in optical signal processing [47], color filters [48], multi-wavelength fiber lasers [49,50],
multichannel dispersion compensators [51], photo-thermal therapy [52], optical WDM
systems [53,54], and fiber-wireless integration for 5G+ communication [55].

2. Structure, Materials, and Method

Our design process started with a geometrical study of the single stub resonator di-
mensions (stub length, stub width, and stub rotation angle) on a target band of wavelengths
(visible and near-infrared). Figure 1 illustrates the relationship between the single stub
dimensions and the notch wavelength. As observed in Figure 1a,b, the notch wavelength
shifts between blue and red as the stub width and length increase, respectively. Addition-
ally, as shown in Figure 1c, the stub angle variation affects the number of notch wavelengths.
Therefore, to work in the visible and near-infrared band, the optimum values of the stub
width and length must be in the range of 50 nm:100 nm and 150 nm:250 nm, respectively.
Finally, three stubs with different rotation angles (45◦, 90◦, 135◦) are merged into an arrow
shape to form the multiple channels of the bandpass filter.
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Figure 1. The relationship between the stub dimensions and the notch wavelength (a) stub width,
(b) stub length, and (c) stub rotation angle.

2.1. Structure of Multi-Channel Bandpass Filter (Fixed & Tunable)

The proposed multi-channel bandpass filter consists of a MIM-WG coupled with
arrow-shaped cavities, as seen in Figure 2. The up and down arrows are separated by a
coupling distance “D”. A parametric analysis has been used to identify the optimum values
of the filter geometry to obtain a high transmission efficiency (see Table 1).



Photonics 2022, 9, 720 3 of 11Photonics 2022, 9, 720 3 of 11 
 

 

 
Figure 2. (a) Schematic diagram of the proposed plasmonic multi-channel bandpass filter structure 
with geometrical parameters found in Table1; (b) Incident TM-mode field distribution with λ = 600 
nm. 

Table 1. Dimensions of the proposed plasmonic multi-channel bandpass filter (up and down arrows 
are identical in geometry size). 

Parameters Symbol Values Unit 
Bus width W 50 nm 

Coupling distance between up and 
down arrows’ cavities 

D 200 nm 

Arrow side length dS 250 nm 
Arrow width wA 50 nm 

Angle of the arrow  θ 45 degree 
Centre length dC 150 nm 

2.2. Materials 
As shown in Figure 2: 

• Fixed channels bandpass filter materials are air (insulator medium fills the bus wave-
guide and dual arrow-shaped cavities) and silver (Ag metal medium). Silver has been 
selected because it is a dominant conductor in the optical and near-infrared range. 
The silver permittivity must be determined when studying the filter wavelength re-
sponse over the desired band. Many analytical models are used to represent the op-
tical properties of the metallic nanoparticles. However, all these models were devel-
oped to fit the experimental data (Johnson and Christy). However, the number of 
parameters, which are used for fitting the experimental data, can affect the accuracy 
of the simulation results [56,57]. Since there are no reliable models for nanomaterials, 
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λ = 600 nm.

Table 1. Dimensions of the proposed plasmonic multi-channel bandpass filter (up and down arrows
are identical in geometry size).

Parameters Symbol Values Unit

Bus width W 50 nm
Coupling distance between up and

down arrows’ cavities D 200 nm

Arrow side length dS 250 nm
Arrow width wA 50 nm

Angle of the arrow θ 45 degree
Centre length dC 150 nm

2.2. Materials

As shown in Figure 2:

• Fixed channels bandpass filter materials are air (insulator medium fills the bus waveg-
uide and dual arrow-shaped cavities) and silver (Ag metal medium). Silver has been
selected because it is a dominant conductor in the optical and near-infrared range. The
silver permittivity must be determined when studying the filter wavelength response
over the desired band. Many analytical models are used to represent the optical proper-
ties of the metallic nanoparticles. However, all these models were developed to fit the
experimental data (Johnson and Christy). However, the number of parameters, which
are used for fitting the experimental data, can affect the accuracy of the simulation
results [56,57]. Since there are no reliable models for nanomaterials, the measurements
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by Johnson and Christy are preferable for expressing silver permittivity (εm) in the
visible range [56,58].

• Tunable channels bandpass filter materials are: non-linear optical (NLO) material [59]
and silver. The refractive index of NLO materials is sensitive to the intensity of the
incident light, which is why the resonance wavelengths can be controlled without
changing the outer size of the structure. InGaAsP is one of the top-tier NLO materials
because of its chemical stability, high optical damage threshold, ease of attainment in
crystalline form, broad operating ranges of wavelength and temperature, and conver-
sion efficiency [60]. InGaAsP fills the bus waveguide and dual arrow-shaped cavities.
The equation of nonlinear dielectric constant, εd, for InGaAsP is as follows [40]:

εd = εL + χ(3) |E|2 (1)

where εL is the linear dielectric constant, which is adjusted at 2.25; χ(3) denotes third-
order nonlinear susceptibility which reads 4 × 10−18 m2/V2; and |E|2 is the intensity
of the incident light that changes the properties of InGaAsP. According to Equation (1),
the permittivity of InGaAsP has been modified locally to be 2.65 and 3.05 when
changing the incident light intensity from 1017 v2/m2 to 2 × 1017 v2/m2, respectively.
Infrared wavelength LED and laser diode at λ ~ 1.3 µm can be used to illuminate the
NLO material (InGaAsP) [61].

2.3. Numerical Method

A two-dimensional finite element method (2D FEM) [62–64] (COMSOL Multiphysics
Version 5.5) is used to calculate the propagation properties of the depicted structure in
Figure 2. Two-dimensional model (2D) is selected rather than three dimensional (3D) model
since both models will obtain the same simulation results; on top of that, it is simpler and
requires fewer computing resources [65]. However, to ensure that the filter performance is
going well with the simulation results, the Ag metal thickness in the z direction is much
longer than in the x and y directions [66]. Inspired by [67], the thickness of the metal
layer (Ag) in our design is preferred to be more than 15% of the working wavelength.
TM-polarized incident light is used to excite the SPP mode at the input port, as seen in
Figure 2b. To achieve numerical convergence, the variations of the normalized transmitted
power have been studied for three different wavelengths (λ = 540 nm, 760 nm, and 860 nm)
with different mesh sizes. Table 2 shows the statistics of that study. So, for numerical
convergence, this structure must be discretized in the x and y directions using:

• A quadratic shape function.
• “Extremely fine” mesh element size with the total number of elements = 526.

Table 2. Statistics of mesh size.

Element Size No. of Elements
Normalized Trans. Power At

λ = 540 nm λ = 760 nm λ = 860 nm

Extremely Fine 526 0.48 0.003 0.74
Extra Fine 456 0.48 0.003 0.73

Finer 410 0.48 0.003 0.65
Normal 382 0.48 0.008 0.51

Extra Coarse 324 0.49 0.009 0.45

3. Numerical Results
3.1. Fixed Multi-Channel Bandpass Filter

Figure 3 shows the transmission spectra of the proposed filter with a different cou-
pling distance “D” between the double arrow shape. The value of “D” controls the con-
structive/destructive interference of waves between the arrow resonators and the bus
waveguide [68]. This interference between waves must be in phases to cause transmission
peaks. We also observed that as the coupling distance continues to rise, multiple discrete
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transmission bands interfered, causing a broadening in its bandwidth. Table 3 summarizes
the filter characteristics with the different values of the coupling distance.
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Table 3. Filter characteristics with various coupling distances between two arrow resonators (values
extracted from Figure 3).

D (nm) λ (nm)
Peak Power η (%) Q-Factor for Pass Channels (>50%)

0
460 17 NA
540 48 NA
860 74 21.5

100
440 57 33.8
560 64 12.4
880 79.9 16

200

420 29 NA
540 58 30
680 75 11.3
900 85 12

600

460 23 NA
540 59 36
620 74 9.5
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7.8 with centered λ = 900 nm940 87

3.2. Tunable Multi-Channel Bandpass Filter Based InGaAsP

As shown in Figure 4a, a red shift in the transmission wavelengths occurs as the inci-
dent light intensity is increased. Figure 4b clarifies the direct positive relationship between
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the transmission wavelengths and the illuminated light intensity. Table 4 summarizes the
filter transmission characteristics through three light intensities. Based on the previous
results, we can shift all of the transmission wavelengths by changing the light intensity.
Figure 5 displays the field distribution of the Hz component through two values of the
light intensity.
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Table 4. Filter transmission characteristics through the variation in light intensity exposed to InGaAsP.

Light Intensities
(v2/m2)

Pass wavelengths
λ (nm)

Trans.
η %

FWHM
(nm) Q-Factor

e0 = 0 640, 800 67, 85 55, 100 11.6, 8
e1 = 1017 700, 860 74, 86 50, 110 14, 7.8

e1 = 2 × 1017 740, 920 83, 87 50, 145 14.8, 6.3

4. Discussion

From the above results:

• A triple-channel bandpass filter with a high transmission efficiency and narrow band-
width can be designed by selecting the value of the coupling distance to be 100 nm.

• A triple-channel bandpass filter with a high transmission efficiency and wide band-
width, can be designed by selecting the value of the coupling distance to be more than
200 nm.

• A tunable multi-channel bandpass filter with high transmission peaks can be controlled
over a range from 600 nm to 1200, thanks to InGaAsP.
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We compare the characteristics of the proposed tunable multi-channel bandpass fil-
ter with other previous work, as seen in Table 5. According to this table, the proposed
multi-channel bandpass filter has the highest number of passed channels and the highest
power efficiency (two of them reach 85%). This tunable multi-channel bandpass filter can
work as a wavelength division multiplexing (WDM) device due to its compact size and
simple construction.

Table 5. Comparison between the proposed tunable multichannel bandpass filter and previous works.

Ref. λ

(nm)
Max. Power

(η %)
Q-Factor of
Each Pass λ

Tunability Method

[69] 880
1550

55
89

12
25 Fixed

[43] 700
882

70
50 NA Changing geometric parameters

[41] 775
1225

70
50 NA

Electrically
Using

LC
With average sensitivity of

65 nm/RIU

[70]
845
900

1084

58
85
85

NA Fixed

[44] 1002
1093

75
65 NA Changing geometric parameters

[18]
1267
1414
1644

69
79
78

26
16
17

Changing geometric parameters

This work

640
700
800
860

67
74
85
86

12
14
8
8

Optically using InGaAsP

The fabrication process of the proposed structure with minimum dimensions of 50 nm
is the next challenge. The oblique angle shadow evaporation technique has numerous
uses in optical trapping (filtering), surface-enhanced spectroscopy, and sensing, so it can
be used to fabricate structures similar to the proposed multi-channel bandpass filter [71],
by suspending the mask above the substrate and adjusting the deposition angle to be
oblique to the normal surface. The fabrication tolerances must be taken into the account
since the geometry of the nano-scaled plasmonic waveguide is insensitive to fabrication
errors [72]. The fabrication tolerance of the proposed tunable multi-channel bandpass filter
was tested by changing the value of the angle “θ “and the sharp edges. All the sharp
edges are slightly curved by radius “R” to be easy for fabrication, as seen in Figure 6a.
The variation in the first factor “θ “on the performance of the proposed filter is shown in
Figure 6b. It has been observed that any angle deviation within the range of ±2o will have
little impact on the filter transmission efficiency, which demonstrates good tolerance and
stability. The second impact factor “R”, which affects the performance of the proposed
filter, is shown in Figure 6c. It is observed that the edges with radius R < 4 nm have a
slightly blue shift in the transmitted wavelengths. This blue shift can be ignored to achieve
a simple fabrication process for the proposed filter. Additionally, the variation in the pump
light field distribution has been considered a third fabrication tolerance factor, because it
may lead to a non-homogeneous tuning of the index distribution within the structure of
the waveguide. Therefore, the transmission spectrum has been recalculated while the light
intensities of the vertical stub resonators (up/down) and bus waveguide are different from
those of the slanted stub resonators (left/right, up/down), as seen in Figure 6d. It has been
observed that a blue shift (tiny shift of 30 nm) in the resonance wavelengths happens when
the index of the nonlinear material has two different intensities of the pumping light at
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the same time within the structure. Since the average difference between the resonance
wavelengths for a homogeneous and nonhomogeneous pump light field distribution is
only 4%, this will not affect the performance and it is relatively acceptable.
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5. Conclusions

This study produces a new shape of the multi-channel plasmonic bandpass filter. This
filter consists of up and down arrow-shaped cavities coupled with an MIM waveguide.
The multichannel bandpass filter provides three passed channels with a good Q-factor
and power efficiency. These cavities are filled with a nonlinear optical material (InGaAsP)
with a minimum width of 50 nm. The refractive index of the InGaAsP material is sensitive
to the intensity of the incident light, which is why the resonance wavelengths can be
controlled without changing the outer size of the structure. These light intensities tuned the
wavelengths over the range from 600 nm to 1200 nm. The suggested filter demonstrates a
good tolerance and stability for the angle deviations within the range of ±2◦. Additionally,
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to obtain a friendly fabrication process for the proposed filter, all the sharp edges can
be slightly curved within a radius value of 4 nm. The designed tunable multi-channel
bandpass filter can play a role in WDM photonic systems which operate in the visible and
near-IR band.
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