Second-Harmonic Generation in Aggregates of Lithium Niobate Particles Formed upon Suspension Freezing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ogov, A.; Mugnier, Y.; Bonacina, L. Harmonic nanoparticles: Noncentrosymmetric metal oxides for nonlinear optics. J. Opt. 2015, 17, 033001. [Google Scholar]
- Staedler, D.; Magouroux, T.; Hadji, R.; Joulaud, C.; Extermann, J.; Schwung, S.; Passemard, S.; Kasparian, C.; Clarke, G.; Gerrmann, M.; et al. Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility. ACS Nano 2012, 6, 2542–2549. [Google Scholar] [CrossRef] [PubMed]
- Pantazis, P.; Maloney, J.; Wu, D.; Fraser, S.E. Second harmonic generating (SHG) nanoprobes for in vivo imaging. Proc. Natl. Acad. Sci. USA 2010, 107, 14535–14540. [Google Scholar] [CrossRef]
- Slenders, E.; Bové, H.; Urbain, M.; Mugnier, Y.; Sonay, A.Y.; Pantazis, P.; Bonacina, L.; Berghe, P.V.; Vandeven, M.; Ameloot, M. Image Correlation Spectroscopy with Second Harmonic Generating Nanoparticles in Suspension and in Cells. J. Phys. Chem. Lett. 2018, 9, 6112–6118. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Centurion, M.; Psaltis, D. Harmonic holography: A new holographic principle. Appl. Opt. 2008, 47, A103–A110. [Google Scholar] [CrossRef] [PubMed]
- Denk, W.; Strickler, J.H.; Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 1990, 248, 73–76. [Google Scholar] [CrossRef]
- Linnenbank, H.; Grynko, Y.; Förstner, J.; Linden, S. Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas. Light Sci. Appl. 2016, 5, e16013. [Google Scholar] [CrossRef]
- Winter, S.; Zielinski, M.; Chauvat, D.; Zyss, J.; Oron, D. The Second Order Nonlinear Susceptibility of Quantum Confined Semiconductors—A Single Dot Study. J. Phys. Chem. C 2011, 115, 4558–4563. [Google Scholar] [CrossRef]
- Lisinski, S.; Ratke, L.; Schaniel, D.; Jungk, T.; Soergel, E.; Boysen, H.; Woike, T. Second-harmonic generation in nano-structured LiTaO3- and LiNbO3-xerogels with randomly oriented ferroelectric grains. Opt. Mater. 2010, 32, 504–509. [Google Scholar] [CrossRef]
- Rodríguez, E.M.; Kumar, K.U.; Speghini, A.; Piccinelli, F.; Nodari, L.; Cannas, C.; Bettinelli, M.; Jaque, D.; Solé, J.G. Non-linear niobate nanocrystals fot two-photon imaging. Opt. Mater. 2011, 33, 258–266. [Google Scholar] [CrossRef]
- Smirnova, D.; Smirnov, A.I.; Kivshar, Y.S. Multipolar second-harmonic generation by Mie-resonant dielectric nanoparticles. Phys. Rev. A 2018, 97, 013807. [Google Scholar] [CrossRef] [Green Version]
- Martorell, J.; Vilaseca, R.; Corbalan, R. Second harmonic generation in a photonic crystal. Appl. Phys. Lett. 1997, 70, 702–704. [Google Scholar] [CrossRef]
- Qiao, Y.; Ye, F.; Zheng, Y.; Chen, X. Cavity-enhanced second-harmonic generation in strongly scattering nonlinear media. Phys. Rev. A 2019, 99, 043844. [Google Scholar] [CrossRef]
- Hewageegana, P.; Apalkov, V. Second harmonic generation in disordered media: Random resonators. Phys. Rev. B 2008, 77, 075132. [Google Scholar] [CrossRef]
- Polson, R.C.; Vardeny, Z.V. Random lasing in human tissues. Appl. Phys. Lett. 2004, 85, 1289–1291. [Google Scholar] [CrossRef]
- Hokr, B.H.; Bixler, J.N.; Cone, M.T.; Mason, J.D.; Beier, H.T.; Noojin, G.D.; Petrov, G.I.; Golovan, L.A.; Thomas, R.J.; Rockwell, B.A.; et al. Bright emission from a random Raman laser. Nat. Commun. 2014, 5, 4356. [Google Scholar] [CrossRef]
- Shevchenko, M.; Zemskov, K.; Karpov, M.; Kudryavtseva, A.; Maresev, A.; Tcherniega, N.; Umanskaya, S. Raman random lasing—Extremely high conversion efficiency and temperature dependence. Opt. Commun. 2022, 508, 127795. [Google Scholar] [CrossRef]
- Ismail, W.Z.W.; Liu, G.; Zhang, K.; Goldys, E.M.; Dawes, J. Dopamine sensing and measurement using threshold and spectral measurements in random lasers. Opt. Express 2016, 24, A85–A91. [Google Scholar] [CrossRef]
- Rempel, A.; Worster, M. The interaction between a particle and an advancing solidification front. J. Cryst. Growth 1999, 205, 427–440. [Google Scholar] [CrossRef]
- Bouville, F.; Maire, E.; Deville, S. Self-Assembly of Faceted Particles Triggered by a Moving Ice Front. Langmuir 2014, 30, 8656–8663. [Google Scholar] [CrossRef]
- You, J.; Wang, J.; Wang, L.; Wang, Z.; Wang, Z.; Li, J.; Lin, X. Dynamic particle packing in freezing colloidal suspensions. Colloids Surf. A Physicochem. Eng. Asp. 2017, 531, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Dedovets, D.; Deville, S. Multiphase imaging of freezing particle suspensions by confocal microscopy. J. Eur. Ceram. Soc. 2018, 38, 2687–2693. [Google Scholar] [CrossRef]
- Deville, S.; Maire, E.; Bernard-Granger, G.; Lasalle, A.; Bogner, A.; Gauthier, C.; Leloup, J.; Guizard, C. Metastable and unstable cellular solidification of colloidal suspensions. Nat. Mater. 2009, 8, 966–972. [Google Scholar] [CrossRef] [PubMed]
- Van Albada, M.P.; Lagendijk, A. Observation of Weak Localization of Light in a Random Medium. Phys. Rev. Lett. 1985, 55, 2692–2695. [Google Scholar] [CrossRef]
- Wolf, P.E.; Maret, G. Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 1985, 55, 2696. [Google Scholar] [CrossRef]
- De Oliveira, P.C.; Perkins, A.E.; Lawandy, N.M. Coherent backscattering from high-gain scattering media. Opt. Lett. 1996, 21, 1685. [Google Scholar] [CrossRef]
- Anderson, P.W. The question of classical localization A theory of white paint? Philos. Mag. Part B 1985, 52, 505–509. [Google Scholar] [CrossRef]
- Faez, S.; Johnson, P.M.; Mazurenko, D.A.; Lagendijk, A. Experimental observation of second-harmonic generation and diffusion inside random media. J. Opt. Soc. Am. B 2009, 26, 235–243. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matrokhin, A.A.; Shevchenko, M.A.; Umanskaya, S.F.; Tareeva, M.V.; Kudryavtseva, A.D.; Tcherniega, N.V. Second-Harmonic Generation in Aggregates of Lithium Niobate Particles Formed upon Suspension Freezing. Photonics 2022, 9, 705. https://doi.org/10.3390/photonics9100705
Matrokhin AA, Shevchenko MA, Umanskaya SF, Tareeva MV, Kudryavtseva AD, Tcherniega NV. Second-Harmonic Generation in Aggregates of Lithium Niobate Particles Formed upon Suspension Freezing. Photonics. 2022; 9(10):705. https://doi.org/10.3390/photonics9100705
Chicago/Turabian StyleMatrokhin, Anton A., Mikhail A. Shevchenko, Sofia F. Umanskaya, Maria V. Tareeva, Anna D. Kudryavtseva, and Nikolay V. Tcherniega. 2022. "Second-Harmonic Generation in Aggregates of Lithium Niobate Particles Formed upon Suspension Freezing" Photonics 9, no. 10: 705. https://doi.org/10.3390/photonics9100705
APA StyleMatrokhin, A. A., Shevchenko, M. A., Umanskaya, S. F., Tareeva, M. V., Kudryavtseva, A. D., & Tcherniega, N. V. (2022). Second-Harmonic Generation in Aggregates of Lithium Niobate Particles Formed upon Suspension Freezing. Photonics, 9(10), 705. https://doi.org/10.3390/photonics9100705