Ultralow Noise and Timing Jitter Semiconductor Quantum-Dot Passively Mode-Locked Laser for Terabit/s Optical Networks
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Results
3.1. Optical Spectrum and Light Current Characteristics
3.2. RIN
3.3. Optical Linewidth (Phase Noise)
3.4. RF Beating Note and Timing Jitter
4. Discussions
5. Application
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jain, P.C. Recent trends in next generation terabit Ethernet and gigabit wireless local area network. In Proceedings of the 2016 International Conference on Signal Processing and Communication (ICSC), Noida, India, 26–28 December 2016; pp. 106–110. [Google Scholar]
- Proietti, R.; Qin, C.; Guan, B.; Fontaine, N.K.; Feng, S.; Castro, A.; Scott, R.P.; Yoo, S.J.B. Elastic Optical Networking by Dynamic Optical Arbitrary Waveform Generation and Measurement. J. Opt. Commun. Netw. 2016, 8, A171–A179. [Google Scholar] [CrossRef]
- Jiang, L.A.; Ippen, E.P.; Yokoyama, H. Semiconductor Mode-Locked Lasers as Pulse Sources for High Bit Rate Data Transmission; Springer Publishers: Berlin/Heidelberg, Germany, 2007; pp. 21–51. [Google Scholar]
- Calo, C. Quantum dot based mode locked lasers for optical frequency combs. Networking and Internet Architecture. Ph.D. Thesis, Institut National des Télécommunications, Avery, France, 2014. [Google Scholar]
- Rosales, R.; Merghem, K.; Calo, C.; Bouwmans, G.; Krestnikov, I.; Martinez, A.; Ramdane, A. Optical pulse generation in single section InAs/GaAs quantum dot edge emitting lasers under continuous wave operation. Appl. Phys. Lett. 2012, 101, 221113. [Google Scholar] [CrossRef]
- Duill, S.P.; Murdoch, S.G.; Watts, R.T.; Rosales, R.; Ramdane, A.; Landais, P.; Barry, L.P. Simple dispersion estimate for single-section quantum-dash and quantum-dot mode-locked laser diodes. Opt. Lett. 2016, 41, 5676–5679. [Google Scholar] [CrossRef] [PubMed]
- Arsenijevi’c, D.; Kleinert, M.; Bimberg, D. Breakthroughs in photonics 2013: Passive mode-locking of quantum-dot lasers. IEEE Photonics J. 2014, 6, 0700306. [Google Scholar] [CrossRef]
- Rafailov, E.U.; Cataluna, M.A.; Sibbett, W. Mode-locked quantum-dot lasers. Nat. Photonics 2007, 1, 395. [Google Scholar] [CrossRef]
- Liu, S.; Wu, X.; Jung, D.; Norman, J.C.; Kennedy, M.; Tsang, H.K.; Gossard, A.C.; Bowers, J.E. High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity. Optica 2019, 6, 128–134. [Google Scholar] [CrossRef]
- Mao, Y.; Lu, Z.; Liu, J.; Poole, P.J.; Liu, G. Pulse Timing Jitter Estimated From Optical Phase Noise in Mode-Locked Semiconductor Quantum Dash Lasers. J. Light. Technol. 2020, 38, 4787–4793. [Google Scholar] [CrossRef]
- Vedala, G.; Al-Qadi, M.; O’Sullivan, M.; Cartledge, J.; Hui, R. Phase noise characterization of a QD-based diode laser frequency comb. Opt. Express 2017, 25, 15890–15904. [Google Scholar] [CrossRef]
- Al-Qadi, M.; Vedala, G.; O’Sullivan, M.; Xie, C.; Hui, R. QD-MLLbased single-sideband superchannel generation scheme with Kramers– Kronig direct detection receivers. IEEE Photon. J. 2019, 11, 7204013. [Google Scholar] [CrossRef]
- Lundberg, L.; Mazur, M.; Mirani, A.; Foo, B.; Schröder, J.; Torres-Company, V.; Karlsson, M.; Andrekson, P.A. Phase-coherent lightwave communications with frequency combs. Nat. Commun. 2020, 11, 1–7. [Google Scholar]
- Marin-Palomo, P.; Kemal, J.N.; Trocha, P.; Wolf, S.; Merghem, K.; Lelarge, F.; Ramdane, A.; Freude, W.; Randel, S.; Koos, C. Comb-based WDM transmission at 10 Tbit/s using a DC-driven quantum-dash mode-locked laser diode. Opt. Express 2019, 27, 31110–31129. [Google Scholar] [CrossRef]
- Mustafa, A.-Q.; Laperle, C.; Charlton, D.; O’Sullivan, M.; Xie, C.; Hui, R. Multichannel 16-QAM single-sideband transmission and Kramers–Kronig detection using a single QD-MLL as the light source. J. Lightwave Technol. 2020, 38, 6163–6169. [Google Scholar]
- Vujicic, V.; Anthur, A.P.; Saljoghei, A.; Panapakkam, V.; Gaimard, Q.; Merghem, K.; Lelarge, F.; Ramdane, A.; Barry, L.P.; Zhou, R. Mitigation of relative intensity noise of quantum dash mode-locked lasers for PAM4 based optical interconnects using encoding techniques. Opt. Express 2017, 25, 20–29. [Google Scholar] [CrossRef]
- Vujicic, V.; Calo, C.; Watts, R.; Lelarge, F.; Browning, C.; Merghem, K.; Martinez, A.; Ramdane, A.; Barry, L.P. Quantum Dash Mode-Locked Lasers for Data Centre Applications. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 53–60. [Google Scholar] [CrossRef]
- Mao, Y.; Liu, J.; Lu, Z.; Song, C.; Poole, P.J. Ultra-Low Timing Jitter of Quantum Dash Semiconductor Comb Lasers With Self-Injection Feedback Locking. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1900607. [Google Scholar] [CrossRef]
- Kemal, J.N.; Marin-Palomo, P.; Panapakkam, V.; Trocha, P.; Wolf, S.; Merghem, K.; Lelarge, F.; Ramdane, A.; Randel, S.; Freude, W.; et al. Coherent WDM transmission using quantum-dash mode-locked laser diodes as multi-wavelength source and local oscillator. Opt. Express 2019, 27, 31164–31175. [Google Scholar] [CrossRef]
- Kemal, J.N.; Marin-Palomo, P.; Merghem, K.; Aubin, G.; Lelarge, F.; Ramdane, A.; Randel, S.; Freude, W.; Koos, C. 32QAM WDM transmission at 12 Tbit/s using a quantum-dash mode-locked laser diode (QD-MLLD) with external-cavity feedback. Opt. Express 2020, 28, 23594–23608. [Google Scholar] [CrossRef]
- Verolet, T.; Aubin, G.; Lin, Y.; Browning, C.; Merghem, K.; Lelarge, F.; Calo, C.; Delmade, A.; Mekhazni, K.; Giacoumidis, E.; et al. Mode Locked Laser Phase Noise Reduction Under Optical Feedback for Coherent DWDM Communication. J. Light. Technol. 2020, 38, 5708–5715. [Google Scholar] [CrossRef]
- Browning, C.; Verolet, T.; Lin, Y.; Aubin, G.; Lelarge, F.; Ramdane, A.; Barry, L.P. 56 Gb/s/λ over 13 THz frequency range and 400G DWDM PAM-4 transmission with a single quantum dash mode-locked laser source. Opt. Express 2020, 28, 22443. [Google Scholar] [CrossRef]
- Liu, G.C.; Lu, Z.G.; Liu, J.R.; Mao, Y.X.; Vachon, M.; Song, C.Y.; Barrios, P.J.; Poole, P.J. Passively mode-locked quantum dash laser with an aggregate 5.376 Tbit/s PAM-4 transmission capacity. Opt. Express 2020, 28, 4587–4593. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, J.; Poole, P.J.; Mao, Y.; Weber, J.; Liu, G.; Barrios, P. InAs/InP Quantum Dash Semiconductor Coherent Comb Lasers and their Applications in Optical Networks. J. Light. Technol. 2021, 39, 3751–3760. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, J.; Mao, L.; Song, C.-Y.; Weber, J.; Poole, P. 12.032 Tbit/s coherent transmission using an ultra-narrow linewidth qantum dot 34.46-GHz C-Band coherent comb laser. In Next-Generation Optical Communication: Components, Sub-Systems, and Systems VIII.; SPIE: Bellingham, WD, USA, 2019; p. 23. [Google Scholar]
- Zou, Q.; Merghem, K.; Azouigui, S.; Martinez, A.; Accard, A.; Chimot, N.; Lelarge, F.; Ramdane, A. Feedback-resistant p-type doped InAs/InP quantum-dash distributed feedback lasers for isolator-free 10 Gb/s transmission at 1.55 μm. Appl. Phys. Lett. 2010, 97, 231115. [Google Scholar] [CrossRef]
- Lu, Z.G.; Liu, J.R.; Raymond, S.; Poole, P.J.; Barrios, P.J.; Poitras, D. 312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser. Opt. Express 2008, 16, 10835–10840. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Liu, J.; Poole, P.; Raymond, S.; Barrios, P.; Poitras, D.; Pakulski, G.; Grant, P.; Roy-Guay, D. An L-band monolithic InAs/InP quantum dot mode-locked laser with femtosecond pulses. Opt. Express 2009, 17, 13609–13614. [Google Scholar] [CrossRef]
- Poole, P.J.; Kaminska, K.; Barrios, P.J.; Lu, Z.G.; Liu, J.R. Growth of InAs/InP-based quantum dots for 1.55 μm laser applications. J. Cryst. Growth 2009, 311, 1482–1486. [Google Scholar] [CrossRef]
- Lu, Z.G.; Liu, J.R.; Poole, P.J.; Song, C.Y.; Chang, S.D. Ultra-narrow linewidth quantum dot coherent comb lasers with self-injection feedback locking. Opt. Express 2018, 26, 11909–11914. [Google Scholar] [CrossRef]
- Lu, Z.G.; Liu, J.R.; Song, C.Y.; Weber, J.; Mao, Y.X.; Chang, S.D.; Ding, H.P.; Poole, P.J.; Barrios, P.J.; Poitras, D. High performance InAs/InP quantum dot 34.462-GHz C-band coherent comb laser module. Opt. Express 2018, 26, 2160–2167. [Google Scholar] [CrossRef]
- Liu, G.C.; Poole, P.J.; Lu, Z.G.; Liu, J.R.; Mao, Y.; Vachon, M.; Barrios, P. InAs/InP quantum dot mode-locked laser with an aggregate 12.544 Tbit/s transmission capacity. Opt. Express 2022, 30, 3205–3214. [Google Scholar] [CrossRef]
- Gilfert, C.; Ivanov, V.; Oehl, N.; Yacob, M.; Reithmaier, J. High gain 1.55 μm diode lasers based on InAs quantum dot like active regions. Appl. Phys. Lett. 2011, 98, 201102. [Google Scholar] [CrossRef]
- Sadeev, T.; Arsenijević, D.; Bimberg, D. Comparison of dynamic properties of InP/InAs quantum-dot and quantum-dash lasers. Appl. Phys. Lett. 2016, 109, 161104. [Google Scholar] [CrossRef]
- Jahan, N.A.; Hermannstädter, C.; Huh, J.-H.; Sasakura, H.; Rotter, T.J.; Ahirwar, P.; Balakrishnan, G.; Akahane, K.; Sasaki, M.; Kumano, H.; et al. Temperature dependent carrier dynamics in telecommunication band InAs quantum dots and dashes grown on InP substrates. J. Appl. Phys. 2013, 113, 033506. [Google Scholar] [CrossRef]
- Zilkie, A.J.; Meier, J.; Mojahedi, M.; Poole, P.J.; Barrios, P.; Poitras, D.; Rotter, T.J.; Yang, C.; Stintz, A.; Malloy, K.J.; et al. Carrier Dynamics of Quantum-Dot, Quantum-Dash, and Quantum-Well Semiconductor Optical Amplifiers Operating at 1.55 μm. IEEE J. Quantum Electron. 2007, 43, 982–991. [Google Scholar] [CrossRef]
- Poole, P.J. InP-based quantum dot lasers. In Advances in Semiconductor Lasers; Coleman, J.J., Bryce, A.C., Jagadish, C., Eds.; Academic Press: Cambridge, MA, USA, 2012; pp. 419–453. [Google Scholar]
- Seimetz, M. Laser Linewidth Limitations for Optical Systems with High-Order Modulation Employing Feed Forward Digital Carrier Phase Estimation. In Optical Fiber Communication Conference; Optical Society of America: Washington, DC, USA, 2008. [Google Scholar]
- Latkowski, S. Radio frequency and terahertz signals generated by passively modelocked semiconductor lasers. Ph.D. Thesis, Dublin City University, Dublin, Ireland, 2010. [Google Scholar]
- Rubiola, E. Phase Noise and Frequency Stability in Oscillators; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Drzewietzki, L.; Breuer, S.; Elsäßer, W. Timing jitter reduction of passively mode-locked semiconductor lasers by self- and external-injection: Numerical description and experiments. Opt. Express 2013, 21, 16142–16161. [Google Scholar] [CrossRef]
- Tourrenc, J.P.; Akrout, A.; Merghem, K.; Martinez, A.; Lelarge, F.; Shen, A.; Duan, G.H.; Ramdane, A. Experimental investigation of the timing jitter in self-pulsating quantum-dash lasers operating at 1.55 µm. Opt. Express 2008, 16, 17706–17713. [Google Scholar] [CrossRef]
- Pfeifle, J.; Vujicic, V.; Watts, R.T.; Schindler, P.C.; Weimann, C.; Zhou, R.; Freude, W.; Barry, L.P.; Koos, C. Flexible terabit/s Nyquist-WDM super-channels using a gain-switched comb source. Opt. Express 2015, 23, 724–738. [Google Scholar] [CrossRef]
- Schmogrow, R.; Nebendahl, B.; Winter, M.; Josten, A.; Hillerkuss, D.; Koenig, S.; Meyer, J.; Dreschmann, M.; Huebner, M.; Koos, C.; et al. Error Vector Magnitude as a Performance Measure for Advanced Modulation Formats. IEEE Photonics Technol. Lett. 2011, 24, 61–63. [Google Scholar] [CrossRef]
- Panapakkam, V.; Anthur, A.; Vujicic, V.; Zhou, R.; Gaimard, Q.; Merghem, K.; Aubin, G.; Lelarge, F.; Barry, L.; Ramdane, A. Amplitude and Phase Noise of Frequency Combs Generated by Single-Section InAs/InP Quantum-Dash-Based Passively and Actively Mode-Locked Lasers. IEEE J. Quantum Electron. 2016, 52, 1–7. [Google Scholar] [CrossRef]
- Ogawa, K. Analysis of mode partition noise in laser transmission systems. IEEE J. Quantum Electron. 1982, 18, 849–855. [Google Scholar] [CrossRef]
- Gay, M.; O’Hare, A.; Bramerie, L.; Hao, Z.; Fresnel, S.; Peucheret, C.; Besnard, P.; Joshi, S.; Barbet, S.; Lelarge, F. Single Quantum Dash Mode-Locked Laser as a Comb-Generator in Four-Channel 112 Gbit/s WDM Transmission. In Optical Fiber Communication Conference; Optical Society of America: Washington, DC, USA, 2014; p. Tu2H.5. [Google Scholar]
- Pfau, T.; Hoffmann, S.; Noé, R. Hardware-Efficient Coherent Digital Receiver Concept With Feedforward Carrier Recovery for 𝑀M-QAM Constellations. J. Lightwave Technol. 2009, 27, 989–999. [Google Scholar] [CrossRef]
- Lelarge, F.; Dagens, B.; Renaudier, J.; Brenot, R.; Accard, A.; van Dijk, F.; Make, D.; Le Gouezigou, O.; Provost, J.-G.; Poingt, F.; et al. Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 µm. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 111–124. [Google Scholar] [CrossRef]
- Hu, H.; da Ros, F.; Pu, M.; Ye, F.; Ingerslev, K.; da Silva, E.P.; Nooruzzaman, M.; Amma, Y.; Sasaki, Y.; Mizuno, T. Single-source chip-based frequency comb enabling extreme parallel data transmission. Nat. Photonics 2018, 12, 469–473. [Google Scholar] [CrossRef] [Green Version]
Equipment | Vendor | Module |
---|---|---|
RF Signal Generator | Keysight | M8195A |
RF Amplifier | Centellax | OA3MHQM |
EDFA | Amonics | AEDFA-PA-35-B-FA |
Optical Filter | Santec | OTF-350 |
DP-QPSK Modulator | Fujitsu | FTM7977HQA |
Modulator Bias Controller | ID Photonics | MBX |
Optical Modulator Analyzer | Keysight | N4392A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Y.; Liu, G.; Zeb, K.; Lu, Z.; Liu, J.; Poole, P.J.; Song, C.-Y.; Barrios, P. Ultralow Noise and Timing Jitter Semiconductor Quantum-Dot Passively Mode-Locked Laser for Terabit/s Optical Networks. Photonics 2022, 9, 695. https://doi.org/10.3390/photonics9100695
Mao Y, Liu G, Zeb K, Lu Z, Liu J, Poole PJ, Song C-Y, Barrios P. Ultralow Noise and Timing Jitter Semiconductor Quantum-Dot Passively Mode-Locked Laser for Terabit/s Optical Networks. Photonics. 2022; 9(10):695. https://doi.org/10.3390/photonics9100695
Chicago/Turabian StyleMao, Youxin, Guocheng Liu, Khan Zeb, Zhenguo Lu, Jiaren Liu, Philip J. Poole, Chun-Ying Song, and Pedro Barrios. 2022. "Ultralow Noise and Timing Jitter Semiconductor Quantum-Dot Passively Mode-Locked Laser for Terabit/s Optical Networks" Photonics 9, no. 10: 695. https://doi.org/10.3390/photonics9100695
APA StyleMao, Y., Liu, G., Zeb, K., Lu, Z., Liu, J., Poole, P. J., Song, C. -Y., & Barrios, P. (2022). Ultralow Noise and Timing Jitter Semiconductor Quantum-Dot Passively Mode-Locked Laser for Terabit/s Optical Networks. Photonics, 9(10), 695. https://doi.org/10.3390/photonics9100695