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Abstract: Diode optical frequency comb lasers are promising compact solutions to generate high-
speed optical pulses for applications in high spectral efficiency wavelength division multiplexing
transmission with advanced modulation formats. In this paper, an InAs/InP quantum dot (QDot)
C-band single-section passively mode-locked laser (MLL) based broadband optical frequency comb
source with a free spectral range of 28.4 GHz is presented. The device exhibits less than 1.5 MHz
optical linewidth (phase noise) over 56 channels and 2.1 fs pulse-to-pulse timing jitter with a central
wavelength of 1550 nm. Using this comb, we demonstrate an aggregate data transmission capacity
of 12.5 Terabit/s over 100 km of standard single mode fiber by employing dual-polarization with
16 QAM modulation format. This investigation shows the viability for semiconductor QDot MLLs to
be used as low-cost optical source in Terabit/s or higher optical networks.

Keywords: semiconductor quantum dot laser; passively mode-locked laser; InAs/InP quantum dot;
wavelength-division multiplexing; quadrature amplitude modulation; Terabit/s optical networks

1. Introduction

Due to the ever-increasing internet traffic worldwide, it is expected that network
communications capacities up to Terabit/s will be required where Gigabit/s speeds are
already becoming standard [1]. Technical implementation of such networks requires
advanced higher-order modulation formats along with parallel transmission on multitudes
of wavelength channels to increase the spectral efficiency [2]. In these circumstances,
optical frequency combs (OFCs) become particularly attractive light sources with large
numbers of well-defined carriers for wavelength-division multiplexing (WDM) in a single
semiconductor diode device. In particular, one of the important advantages of OFCs is that
the comb lines are inherently equidistance in frequency, hence easing the requirements for
inter-channel guard bands and avoiding frequency control of individual lines as needed in
conventional schemes that combine arrays of independent distributed-feedback lasers.

OFCs generated by monolithic semiconductor mode-locked lasers (MLLs) have been
demonstrated to be efficient for WDM based optical networks owing to compact size, low
power consumption, wide optical bandwidth with a flat optical spectrum, and the ability
for hybrid integration with silicon substrates. Monolithic MLLs have been widely studied
in bulk and quantum well (QW) semiconductor devices for more than 30 years [3]. It has
been demonstrated that using quantum dots (QDots) or quantum dashes (QDashes) as
the active gain medium instead of QWs for semiconductor lasers can provide a number
of enhancements in device performance [4]. This makes QDot or QDash single-section
passively (SSP) MLLs very promising for creating OFCs for the next generation of high-
speed networks [5]. The common implementation is a simple Fabry–Pérot (F–P) cavity
laser which supports multiple longitudinal lasing modes with all the modes mutually
phase locked [6]. Since there is no saturable absorber section, the SSP MLLs achieve
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mode-locking results with an increased average output power, simpler fabrication, simpler
operation, and the ability to operate at higher repetition rate [7]. Moreover, they offer
reduced spontaneous emission rates and low threshold current densities, which leads to
reduced intrinsic noise [8,9]. Although these lasers exhibit optical linewidths in the sub-
MHz range, the radio frequency (RF) linewidth [10] and differential phase noise between
adjacent comb lines is much narrower, showing high coherence among spectral lines thus
enabling advanced modulation formats [11,12] and joint phase estimation [13].

Various publications have shown the potential of SSP QDot and QDash MLL for
Terabit/s transmission [9,10,14–25], such as an aggregate capacity of 10 Terabit/s reported
on 16 QAM dual-polarization 75 km standard single-mode fiber (SSMF) WDM transmission
using 38 channels of a QDash-MLL [14]. It is also shown in [20] that by utilizing an external-
cavity feedback technique, an increased aggregate capacity of 12 Terabit/s with 32 QAM
WDM transmission could be achieved. However, external feedback makes the setup
more complex, which may result in undesirable situations such as mode instability or
hopping, that could reduce the bit error rate (BER) performance in data transmission [26].
In recent years, we have reported InAs/InP QDot and QDash MLLs operating in the C-
and L-band with channel spacings from GHz to THz [10,18,23–25,27–32]. Comparison of
Qdot vs. QDash lasers has suggested that QDots are favorable for mode-locking, as the
improved height-diameter aspect provides a deeper confinement of the charge carriers [33].
QDot lasers have been shown to exhibit larger values of direct modulation bandwidth
and relaxation oscillation frequency induced by the fast carrier capture from the wetting
layer to the dots [34–36]. In our group we have also consistently observed shorter pulse
durations with QDot based MLLs as compared to that of QDash and demonstrated it
in high-capacity networks [32]. However, the systematic performance of QDot MLLs,
especially for the timing jitter and noise mechanisms, have not been investigated. In this
paper, we study detailed properties of a QDot based InAs/InP SSP MLL with a mode
spacing of 28.4 GHz, including relative intensity noise (RIN), phase noise, pulse-to-pulse,
and pulse-to-clock (integrated) timing jitter. Discussions of the comparison with published
results are also presented. Moreover, the application of a 28.4 GHz InAs/InP QDot SSP
MLL in a 12.5 Terabit/s optical network over 100 km of SSMF with 16 QAM modulation is
experimentally demonstrated.

2. Materials and Methods

Figure 1a,b show a schematic cross-sectional diagram and scanning electron micro-
scope (SEM) image of the InAs/InP F-P QDot SSP MLL with a single lateral mode ridge-
waveguide structure. The laser structure was grown on a 3” (001) oriented n-type InP
substrate, with the n-type cladding and laser core grown by chemical beam epitaxy. An
n-type InP cladding was first grown, followed by a 350 nm thick lattice matched InGaAsP
waveguide core. The composition of InGaAsP was chosen to have a photoluminescence
peak of 1.15 µm at 300 K. This core structure provides both carrier and optical confinement.
By choosing appropriated growth conditions we could create either QDot or QDash layers
as the gain medium [37] in the waveguide core. For this device, we grew five stacked layers
of QDots in the center, forming the laser active region. A top view SEM image of typical
surface InAs Qdot is shown Figure 1c. The five InAs dot layers were deposited, followed
by a 25 s growth interruption for each layer to allow the In to diffuse on the surface and
form dots. Each dot layer is then capped with a thin InP barrier layer and finally capped
with the InGaAsP barrier material. This double-cap process was used to precisely control
the emission wavelength [29]. The average QDot density in each active layer is around
3.5 × 1010 cm−2. An upper p-type InP cladding layer (containing an etch stop for ridge
fabrication) and a heavily doped p-type InGaAs contact layer are then grown with metal
organic chemical vapor deposition.
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Figure 1. (a) Schematic cross-sectional diagram of the ridge-waveguide InAs/InP QDot laser struc-
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top view of an InAs QDot layer. 
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μm to form F-P lasers with a corresponding to 28.4 GHz mode spacing (repetition rate). A 
cleaved cross-section SEM image is shown in Figure 1b showing a waveguide width of 2.3 
μm. No coatings were deposited on the cleaved facets. 
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substrate side down to one pad using eutectic gold tin, and the top contact is made 
through wire-bonding to the other pad. To reduce temperature fluctuations, this chip-on-
carrier is placed on a copper block with a thermoelectric cooler underneath to maintain 
an operating temperature range of 18–20 °C. An ultra-low-noise battery powered laser 
diode driver controller (ILX Lightwave, Model LDC-3722) is used to DC bias the laser. 
The laser output light is collected from its front facet using a lensed polarization main-
taining (PM) fiber attached to a two-stage PM isolator for reducing any back-reflections. 
The position of this lensed fiber is precisely adjustable in three dimensions for coupling 
the light optimally from the laser cavity. This laser is free run without any form of feed-
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3. Experimental Results 
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length of 1549.6 nm with 56 lasing modes as indicated in the Figure 2a. For this device, an 
optical signal-to-noise ratio (OSNR) greater than 60 dB is achieved. Moreover, from Figure 
2b, it can be seen that a threshold current of 60 mA and fiber coupled optical power of 24.4 
mW at 450 mA are obtained. 

Figure 1. (a) Schematic cross-sectional diagram of the ridge-waveguide InAs/InP QDot laser struc-
ture; (b) SEM images of the cross-sectional facet of a fabricated F-P InAs/InP QDot laser; and (c) the
top view of an InAs QDot layer.

Following growth, lasers are processed by defining ridges using a combination of dry
etching into the InP cladding followed by wet etching to an etch stop layer as shown in
Figure 1a. Finally, a SiO2/SiN isolation layer and a metal contact layer are deposited to
form a low resistance Ohmic contact. Devices are then cleaved to cavity lengths of 1500 µm
to form F-P lasers with a corresponding to 28.4 GHz mode spacing (repetition rate). A
cleaved cross-section SEM image is shown in Figure 1b showing a waveguide width of
2.3 µm. No coatings were deposited on the cleaved facets.

For the experimental characterization the laser chip is mounted onto a commercially
available aluminum nitride carrier to provide mechanical support with two gold electro-
plated pads to provide electrical connection to the laser chip. The laser chip is bonded
substrate side down to one pad using eutectic gold tin, and the top contact is made through
wire-bonding to the other pad. To reduce temperature fluctuations, this chip-on-carrier is
placed on a copper block with a thermoelectric cooler underneath to maintain an operating
temperature range of 18–20 ◦C. An ultra-low-noise battery powered laser diode driver
controller (ILX Lightwave, Model LDC-3722) is used to DC bias the laser. The laser output
light is collected from its front facet using a lensed polarization maintaining (PM) fiber
attached to a two-stage PM isolator for reducing any back-reflections. The position of this
lensed fiber is precisely adjustable in three dimensions for coupling the light optimally
from the laser cavity. This laser is free run without any form of feedback to control the
laser linewidth.

3. Experimental Results
3.1. Optical Spectrum and Light Current Characteristics

Figure 2a shows the lasing spectrum at a drive current of 400 mA, and Figure 2b
single-mode fiber coupled light output of the laser as a function of drive current. During
measurements, a heatsink temperature of 18 ◦C was used. The 3 dB bandwidth of the
laser is 9.3 nm, from 1545.8 nm to 1555.2 nm, at a central wavelength of 1550.5 nm with
42 lasing modes. The 10 dB bandwidth is 12.5 nm, from 1543.3 nm to 1555.8 nm, at a central
wavelength of 1549.6 nm with 56 lasing modes as indicated in the Figure 2a. For this device,
an optical signal-to-noise ratio (OSNR) greater than 60 dB is achieved. Moreover, from
Figure 2b, it can be seen that a threshold current of 60 mA and fiber coupled optical power
of 24.4 mW at 450 mA are obtained.
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Figure 2. (a) Optical spectrum and (b) light-current characteristics of the single-mode fiber coupled
laser measured at 400 mA and a temperature of 18 ◦C.

3.2. RIN

To investigate the RIN for the laser, the RIN spectra including all modes and individual
longitudinal modes are measured in the frequency range from 10 MHz to 20 GHz using
the Keysight N4371A RIN measurement system; examples are shown in Figure 3a. The
RIN values from the entire spectral emission are all below –160 dB/Hz over the 20 GHz
frequency range, and an integrated average RIN as low as −164.4 dB/Hz is achieved.
The RIN spectra of individual longitudinal modes are assessed by selecting each mode
using a tunable optical narrow bandwidth filter. Figure 3a shows a comparison of the RIN
spectra of three modes at low (1546.04 nm), center (1550.58 nm), and long (1554.46 nm)
wavelength. They all demonstrate similar behaviors and the RIN values measured at high
frequencies (>4 GHz) drop down to below −140 dB/Hz for all three modes. Figure 3b
shows the integrated average RIN values and the difference of the average RIN from the
average value (−133.54 dB/Hz) for 19 selected modes across the wavelength range from
1543 nm to 1556 nm (which contains a total of 56 modes). It is observed that the average
RIN is below −132.2 dB/Hz, and the difference is <1.3 dB for the modes between 1543
and 1555 nm. At the long wavelength range close to 1556 nm, the average RIN and the
difference are increased to −128.7 dB/Hz and 4.8 dB. However, the measured RIN values
of the all-longitudinal modes are below the IEEE standard (−128 dB/Hz) for RIN with
Terabit/s communications as demonstrated in [17].
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Figure 3. (a) RIN spectra including all the modes (red) and three filtered individual channels at
1546.04 nm (brown), 1550.58 nm (blue), and 1554.46 nm (green) for the laser measured at an injection
current of 400 mA and 18 ◦C in the frequent range from 10 MHz to 20 GHz; (b) calculated average
RIN (blue) over the 20 GHz frequency bandwidth from the RIN spectra and the difference (yellow)
of average RIN from their average value (−133.54 dB/Hz) for 19 filtered individual modes in the
wavelength range from 1543 to 1556 nm.

3.3. Optical Linewidth (Phase Noise)

Phase noise of OFC sources is becoming a very critical parameter for higher-order
QAM modulation formats [38]. Phase noise normally is presented by optical mode
linewidth. Figure 4a shows the measured phase noise for the selection of individual



Photonics 2022, 9, 695 5 of 11

longitudinal lasing modes in the wavelength range from 1543 to 1556 nm. The laser was
driven at 400 mA at a temperature of 18 ◦C. The phase noise is obtained by analyzing the
frequency noise spectra using an optical auto-correlator. A narrowband optical tunable
filter (EXFO XTM-50) is used for filtering the individual longitudinal lasing modes. The
minimum measured phase noise is 0.19 MHz at a wavelength of 1552.4 nm, and all values
of phase noise are below 1.5 MHz. The phase noise as a function of mode number is fitted
to a parabolic curve, as shown in Figure 4b. A technique for estimating the RF linewidth
(∆ fFR1) from the parabolic curve fitting of phase noise (∆υn) vs. mode number (∆n) for a
SSP MLL has been recently studied [10]. Using the deduced explicit expression as shown
in [10] Equation (7), parabolic fitting results of a minimum linewidth of ∆υmin = 240 kHz
at the 13th mode is extracted for the 28.4 GHz laser with QDot gain material. The first
harmonic RF linewidth is then extracted from the parabolic fit giving ∆υRF1 = 0.631 kHz.
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measured using an OEWaves OE4000 automated laser linewidth/phase noise measurement system.
The laser was driven at 400 mA at a temperature of 18 ◦C.

3.4. RF Beating Note and Timing Jitter

To verify the ∆υRF1 obtained using the optical technique described in the above section,
we performed a direct measurement of the RF linewidth using a high-speed photodetector.
We focused all modes of the laser onto a 45 GHz IR photodetector and monitored the
electrical output using a 50 GHz PXA signal analyzer. The RF signal analyzer was set to
a 51 Hz resolution bandwidth (RBW) and 100 kHz span. Figure 5a shows the measured
normalized first harmonic RF power spectral density (PSD) and Lorentzian curve fit for
the laser with the frequency offset for clarity. A peak frequency f0 of 28.427 GHz was
obtained, where f0 represents the pulse repetition rate, which is consistent with the mea-
sured mode spacing from the optical spectrum. The Lorentzian line shape provide good fit
for the measured RF PSD curve. The extracted FWHM Lorentzian linewidths, ∆ fFR1, of
0.654 kHz is obtained. Since the properties of intrinsic phase noise from relatively broad-
band spontaneous emission in the passively ML laser leads to a Lorenzian-shaped PSD of
photocurrent RF phase noise, an expression of RMS pulse-to-pulse time jitter estimated
from a Lorenzian fitted RF linewidth was proposed in [18] Equation (3). The pulse-to-pulse
timing jitter of 2.13 and 2.09 fs are obtained from the direct RF linewidth measurement
(∆υRF1 = 0.654 kHz) and the parabolic curve fit of phase noise vs. mode number through
RF linewidth (∆υRF1 = 0.631 kHz), respectively.
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In the case of a semiconductor passively mode-locked laser, it is shown that due to
material nonlinearities and saturated absorber in the gain area, the phase correlation of
the optical longitudinal modes can take place resulting in a strong four wave mixing [39].
This is especially true for an active region consisting of QDot or QDash structures. The
common pulse to clock RMS time jitter, also called integrated timing jitter, can be obtained
from integration of the single side band (SSB) phase noise spectrum L(f) by [40,41]

σint =
1

2π f0

√
2
∫ fhigh

flow

L( f )d f =
1

2π f0

√
2(A12 + A23 + A34 + A45) (1)

where fhigh and flow are the upper and lower integration frequencies, respectively; L(f) is
equal to the normalized RF PSD for a one Hz bandwidth in the interested range; and
A12, A23, A34, and A45 are corresponding to the areas of 1/f 3 flicker frequency modulation
(FFM), 1/f 2 white flicker frequency noise (WFF), 1/f 1 flicker phase modulation (FPM),
and 1/f 0 white (shot) noise regions, respectively [40]. A typical L(f) for a passively MLL
is shown in Figure 5b where f 1, f 2, f 3, and f 4 indicate the frequency boundaries of the
different noise mechanisms with corresponded slopes. As pointed out in [41], this phase
noise estimation method is only valid for passively MLLs at frequency offsets well above
the carrier peak linewidth.

Figure 5c shows measured SSB L(f) which is obtained from the normalized measured
RF PSD for a one Hz bandwidth in the offset frequency range from center (as origin) to
20 MHz at the RBW setting of 10 kHz for the laser. From the colored dashed lines with
negative slopes corresponding to the different noise mechanisms, it is observed that 1/f2

WFF noise is dominated at the low offset frequency from 35 kHz to 250 kHz, which is the
common type of noise found in a passively mode-locked laser. It intersects 1/f4 random
walk at the phase noise level of −79.8 dBc/Hz, which is caused by external environment
effects on the laser. The random-walk noise near carrier peak contributes to the laser’s
pulse-to pulse timing jitter. 1/f3 FFM and 1/f FPM noises are total masked. Above 250 kHz,
the frequency independent shot noise dominates at level of −96.5 dBc/Hz. The integrated
timing jitter of 564.8 fs is obtained by using Equation (1) in the frequency range from 35 kHz
to 20 MHz, which is contributed to by 1/f2 WFF and shot noises. Above 20 MHz, the phase
noise is affected by the noise floor level of the ESA, thus limiting the contribution of the
high frequency components (>20 MHz) to the timing jitter as described in [42].

4. Discussions

The performance of coherent networks highly depends on the properties of optical
source, such as the number and power of comb modes, OSNR, RIN, phase noise, and timing
jitter [43]. The laser investigated in this paper possesses related high individual optical
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powers (over −16.6 dBm) for all 65 modes as shown in Figure 2a. In addition, the extremely
high OSNR (>60 dB) with the central wavelength located at the middle of the C-band are
benefits for achieving high performance in a multi-channel parallel transmission WDM
with high-order advanced modulation formats [44].

The all-modes integrated average RIN of −164.4 dB/Hz achieved for our QDot SSP
MLL is much lower than that (−140 dB/Hz) from the QDash SSP MLL reported in Ref [45].
On the other hand, RINs of individual single longitudinal modes are important parameters
since each of the modes of the laser are to be used as transmission channels. They are
expected to have a higher RIN in comparison to the collective RIN of all the modes due
to mode partition noise, which arises due to an intensity anti-correlation between the
longitudinal modes [46,47]. The small values of the average RIN between −134.8 and
−128.7 dB/Hz for all 56 modes obtained in this study are attributed to the characteristics
of QDot material inside the laser cavity with very low mode partition noise.

According to the analysis of tolerance against the laser linewidth (∆υ) times symbol
duration (Ts) product (∆υ·Ts) for a receiver penalty of 1 dB at a BER of 10−3 [48], the
maximun tolerable linewidth for a 28 Gbaud system are 3.92 MHz and 1.12 MHz for the
square 16 QAM and 64 QAM modulation formats, respectively. From the measured results
shown in Figure 4, all 56 modes of our laser are suitable for the 28 Gbaud 16 QAM system
and most modes are suitable for the 28 Gbaud 64 QAM system.

The value of the RF linewidth of a semiconductor MLL is strongly affected by the
gain material dimensionality. It decreases when moving from bulk to QW and from QW to
QDot/Qdash active regions, as shown in Figure 6. Typical values of the RF linewidth lie in
the range of a few tens of kilohertz [49] and a few kilohertz [10] for QDash active regions
down to a few hundreds of hertz reported in this study for QDot MLLs, compared with the
much larger RF linewidth for bulk and QW MLLs.
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Study of the RF linewidth either from a directly measurement of the RF spectrum or
curve fitting of measured phase noise vs. mode number can provide simple and appropriate
ways to characterize the pulse-to-pulse timing jitter of a semiconductor passively ML laser.
The results from the two methods presented in this work are in excellent agreement. The
method of parabola curve fitting from measured phase noise vs. mode number does
not require a direct measurement of the RF PSD, which for a high repetition rate laser
necessitates the use of a high-speed photodetector. Therefore, this method is not restricted
to measuring lasers with repetition rates below the bandwidth of the used photodetector.
The femtosecond level pulse-to-pulse timing jitter obtained from the laser studied in this
study demonstrates highly stable mode spacing across the whole comb.

An integrated timing jitter of 790 fs is reported in the frequency range from 1 to
20 MHz for a 40 GHz InAs/InP QDash SSP MLLs [42]. In order to make a comparison, we
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calculated an integrated timing jitter of 538.5 fs in the same frequency range (1–20 MHz) for
our laser with a QDot gain material, a significant improvement over that reported in [42].

5. Application

Figure 7 shows the experimental setup for the dual-polarization QAM data format
transmission. A 28 GBd 16 QAM base-band signal is created by using an arbitrary waveform
generator (AWG, 65 GSa/s, 25 GHz bandwidth) with a pseudo-random bit sequence
with a pattern length of 215-1 on four channels (IX/IY/QX/QY). A root-raised-cosine
filter is applied with the roll-factor of 0.35 for Nyquist pulse filtering. Thermally stable
nested double polarization lithium niobate Mach-Zehnder modulators that constitute
two I/Q optical modulators are driven by the AWG for data transmission. The encoded
optical signal is transmitted for both back-to-back (B2B) configuration and over 100 km
SSMF, respectively. The encoded signal is amplified by an erbium doped fiber amplifier
(EDFA) and then an optical band pass filter is used to filter out the amplified spontaneous
emission from the EDFA. At the receiver side, an optical modulation analyzer (OMA,
63 GSa/s, 23 GHz bandwidth) coherently receives the signals using a free-running local
oscillator. Combined with the vector signal analyzer software package offered by the OMA,
the sampled waveforms are processed with front-end correction and de-skewing, then
compensated for chromatic dispersion and frequency offset. Afterwards, the signals are
match-filtered and synchronized for time-domain equalization. Finally, the output 16 QAM
signal is decoded for error-vector-magnitude (EVM) measurement and BER evaluation.
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Figure 7. Setup schematic of a dual polarization QAM data format transmission system. The laser
studied in this paper is used as the coherent transmitter source. All other equipment used is listed in
Table 1.

Table 1. The main equipment used in our DP-QAM format data transmission system.

Equipment Vendor Module

RF Signal Generator Keysight M8195A
RF Amplifier Centellax OA3MHQM

EDFA Amonics AEDFA-PA-35-B-FA
Optical Filter Santec OTF-350

DP-QPSK Modulator Fujitsu FTM7977HQA
Modulator Bias Controller ID Photonics MBX

Optical Modulator Analyzer Keysight N4392A

Figure 8a shows the BER performance of each channel at the same received optical
power of −10 dBm for 16 randomly selected channels in the B2B system and all individual
channels after inserting 100 km SSMF. All BER values are exhibited below the hard-decision
FEC (HD-FEC) limit (BER = 3.8 × 10−3) [50] with B2B and after 100 km SSMF transmission.
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Figure 8b shows constellation diagrams for the channel at 1552.180 nm wavelength
with B2B and after 100 km SSMF transmission. In the B2B configuration, a signal qual-
ity (Q2[dB] ≈ 20log10

(
1

EVM

)
) [44] higher than 20 dB is achieved. It drops to 18.7 dB

when adding 100 km SSMF, which is probably due to the dispersion in the SSMF. The
achieved aggregate line-rate data transmission capacity of the system is 12.5 Terabit/s
(16QAM 56 × 28 GBd PDM).

6. Conclusions

The performance of an InAs/InP QDot SSP MLL with a mode spacing of 28.4 GHz
is investigated in detail. For the 56 filtered individual channels, the average RIN value
is –133.54 dB/Hz and the phase noise is less than 1.5 MHz for each individual channel.
Moreover, a pulse-to-pulse timing jitter of 2.1 fs and integrated timing jitter of 564.8 fs
in the frequency range from 35 kHz to 20 MHz are obtained. It is observed that the 1/f2

white flicker frequency is the main contribution to the phase noise in the low frequency
(<250 kHz), and shot noise dominants when frequency is >250 kHz. By employing this
ultralow noise and timing jitter laser with 56 wavelength channels as optical carriers,
12.5 Terabit/s aggregate data transmission capacity is demonstrated with dual-polarization
16 QAM and base modulation rate of 28 GBd over a 100 km standard single-mode fiber.
This performance is obtained without any form of feedback to control the laser linewidth.
These results may lead to an important step towards small size, cost-efficient, low noise,
low timing jitter, and a high number of multi-channel light sources for optical networking
systems with the capacity of Terabit/s or even higher.
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