Nanograting-Enhanced Optical Fibers for Visible and Infrared Light Collection at Large Input Angles
Abstract
:1. Introduction
2. Theoretical Toy Model Analysis
3. Implementation and Characterization Setup
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghatak, A.A.; Ghatak, A.; Thyagarajan, K.; Thyagarajan, K. An Introduction to Fiber Optics; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Miller, S. Optical Fiber Telecommunications; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Alexander Schmidt, M.; Argyros, A.; Sorin, F. Hybrid optical fibers-an innovative platform for in-fiber photonic devices. Adv. Opt. Mater. 2016, 4, 13–36. [Google Scholar] [CrossRef]
- Leung, A.; Shankar, P.M.; Mutharasan, R. A review of fiber-optic biosensors. Sens. Actuators B Chem. 2007, 125, 688–703. [Google Scholar] [CrossRef]
- Doherty, B.; Csáki, A.; Thiele, M.; Zeisberger, M.; Schwuchow, A.; Kobelke, J.; Fritzsche, W.; Schmidt, M.A. Nanoparticle functionalised small-core suspended-core fibre–a novel platform for efficient sensing. Biomed. Opt. Express 2017, 8, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zeisberger, M.; Hübner, U.; Schmidt, M.A. Nanotrimer enhanced optical fiber tips implemented by electron beam lithography. Opt. Mater. Express 2018, 8, 2246–2255. [Google Scholar] [CrossRef]
- Hong, Y.; Zhao, D.; Wang, J.; Lu, J.; Yao, G.; Liu, D.; Luo, H.; Li, Q.; Qiu, M. Solvent-Free Nanofabrication Based on Ice-Assisted Electron-Beam Lithography. Nano Lett. 2020, 20, 8841–8846. [Google Scholar] [CrossRef] [PubMed]
- Chemnitz, M.; Gebhardt, M.; Gaida, C.; Stutzki, F.; Kobelke, J.; Limpert, J.; Tünnermann, A.; Schmidt, M.A. Hybrid soliton dynamics in liquid-core fibres. Nat. Commun. 2017, 8, 42. [Google Scholar] [CrossRef]
- Sollapur, R.; Kartashov, D.; Zürch, M.; Hoffmann, A.; Grigorova, T.; Sauer, G.; Hartung, A.; Schwuchow, A.; Bierlich, J.; Kobelke, J.; et al. Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers. Light. Sci. Appl. 2017, 6, e17124. [Google Scholar] [CrossRef] [Green Version]
- Klas, R.; Kirsche, A.; Gebhardt, M.; Buldt, J.; Stark, H.; Hädrich, S.; Rothhardt, J.; Limpert, J. Ultra-short-pulse high-average-power Megahertz-repetition-rate coherent extreme-ultraviolet light source. PhotoniX 2021, 2, 1–8. [Google Scholar] [CrossRef]
- Choi, Y.; Yoon, C.; Kim, M.; Yang, T.D.; Fang-Yen, C.; Dasari, R.R.; Lee, K.J.; Choi, W. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett. 2012, 109, 203901. [Google Scholar] [CrossRef] [PubMed]
- Bovino, F.A.; Varisco, P.; Colla, A.M.; Castagnoli, G.; Di Giuseppe, G.; Sergienko, A.V. Effective fiber-coupling of entangled photons for quantum communication. Opt. Commun. 2003, 227, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Zeisberger, M.; Hübner, U.; Schmidt, M.A. Boosting light collection efficiency of optical fibers using metallic nanostructures. ACS Photonics 2019, 6, 691–698. [Google Scholar] [CrossRef]
- Yermakov, O.; Schneidewind, H.; Hübner, U.; Wieduwilt, T.; Zeisberger, M.; Bogdanov, A.; Kivshar, Y.; Schmidt, M.A. Nanostructure-empowered efficient coupling of light into optical fibers at extraordinarily large angles. ACS Photonics 2020, 7, 2834–2841. [Google Scholar] [CrossRef]
- Snyder, A.W.; Love, J. Optical Waveguide Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Saleh, B.E.; Teich, M.C. Fundamentals of Photonics; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Khorasaninejad, M.; Capasso, F. Metalenses: Versatile multifunctional photonic components. Science 2017, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, X.; Zheng, G.; Yuan, Q.; Zang, W.; Chen, R.; Li, T.; Li, L.; Wang, S.; Wang, Z.; Zhu, S. Imaging based on metalenses. PhotoniX 2020, 1, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Thorlabs. 0.50 NA Step-Index Multimode Fibers. Available online: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=362 (accessed on 16 June 2021).
- Cordero, E.; Latka, I.; Matthäus, C.; Schie, I.W.; Popp, J. In-vivo Raman spectroscopy: From basics to applications. J. Biomed. Opt. 2018, 23, 071210. [Google Scholar] [CrossRef] [PubMed]
- Pahlevaninezhad, H.; Khorasaninejad, M.; Huang, Y.W.; Shi, Z.; Hariri, L.P.; Adams, D.C.; Ding, V.; Zhu, A.; Qiu, C.W.; Capasso, F.; et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 2018, 12, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Scully, R.A.; Shayan, K.; Luo, Y.; Strauf, S. Near-unity light collection efficiency from quantum emitters in boron nitride by coupling to metallo-dielectric antennas. ACS Nano 2019, 13, 6992–6997. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Zeisberger, M.; Hübner, U.; Schmidt, M.A. Nanograting-Enhanced Optical Fibers for Visible and Infrared Light Collection at Large Input Angles. Photonics 2021, 8, 295. https://doi.org/10.3390/photonics8080295
Wang N, Zeisberger M, Hübner U, Schmidt MA. Nanograting-Enhanced Optical Fibers for Visible and Infrared Light Collection at Large Input Angles. Photonics. 2021; 8(8):295. https://doi.org/10.3390/photonics8080295
Chicago/Turabian StyleWang, Ning, Matthias Zeisberger, Uwe Hübner, and Markus A. Schmidt. 2021. "Nanograting-Enhanced Optical Fibers for Visible and Infrared Light Collection at Large Input Angles" Photonics 8, no. 8: 295. https://doi.org/10.3390/photonics8080295
APA StyleWang, N., Zeisberger, M., Hübner, U., & Schmidt, M. A. (2021). Nanograting-Enhanced Optical Fibers for Visible and Infrared Light Collection at Large Input Angles. Photonics, 8(8), 295. https://doi.org/10.3390/photonics8080295