Theoretical Considerations of Photonic Crystal Fiber with All Uniform-Sized Air Holes for Liquid Sensing
Abstract
:1. Introduction
2. Design
3. Methodology
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knight, J.C.; Birks, T.A.; Russell, P.S.J.; Atkin, D.M. All-silica single-mode optical fiber with photonic crystal cladding: Errata. Opt. Lett. 1997, 22, 484. [Google Scholar] [CrossRef]
- Cordeiro, C.M.B.; Franco, M.A.R.; Chesini, G.; Barretto, E.C.S.; Lwin, R.; Brito Cruz, C.H.; Large, M.C.J. Microstructured-core optical fibre for evanescent sensing applications. Opt. Express 2006, 14, 13056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leon, M.J.B.M.; Kabir, M.A. Design of a liquid sensing photonic crystal fiber with high sensitivity, bireferingence & low confinement loss. Sens. Bio-Sens. Res. 2020, 28, 100335. [Google Scholar] [CrossRef]
- Buczynski, R. Photonic crystal fibers. Acta Phys. Pol. A 2004, 106, 141–167. [Google Scholar] [CrossRef]
- Lucki, M. Photonic Crystal Fibers with Optimized Dispersion for Telecommunication Systems. Recent Prog. Opt. Fiber Res. 2012. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Bisht, A.; Bisht, A.; Singh, G.; Amphawan, A. Design of photonics crystal fiber sensors for bio-medical applications. Opt. Meas. Syst. Ind. Insp. IX 2015, 9525, 95252B. [Google Scholar] [CrossRef]
- Pinto, A.M.R.; Lopez-Amo, M. Photonic crystal fibers for sensing applications. J. Sens. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Mishra, S.K.; Ung, B. Ultra-sensitive and large dynamic range refractive index sensor utilizing annular core photonic crystal fiber. SPIE 2019, 5, 1112305. [Google Scholar] [CrossRef]
- Paul, A.K. Design and analysis of photonic crystal fiber plasmonic refractive Index sensor for condition monitoring of transformer oil. OSA Contin. 2020, 3, 2253. [Google Scholar] [CrossRef]
- Maidi, A.M.; Yakasai, I.; Abas, P.E.; Nauman, M.M.; Apong, R.A.; Kaijage, S.; Begum, F. Design and Simulation of Photonic Crystal Fiber for Liquid Sensing. Photonics 2021, 8, 16. [Google Scholar] [CrossRef]
- Ahmed, K.; Morshed, M. Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications. Sens. Bio-Sens. Res. 2016, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Asaduzzaman, S.; Ahmed, K.; Bhuiyan, T.; Farah, T. Hybrid photonic crystal fiber in chemical sensing. Springerplus 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Paul, B.K.; Ahmed, K.; Asaduzzaman, S.; Islam, M.I.; Chowdhury, S.; Sen, S.; Bahar, A.N. Liquid-infiltrated photonic crystal fiber for sensing purpose: Design and analysis. Alex. Eng. J. 2018, 57, 1459–1466. [Google Scholar] [CrossRef]
- Ahmed, K.; Morshed, M.; Asaduzzaman, S.; Arif, M.F.H. Optimization and enhancement of liquid analyte sensing performance based on square-cored octagonal photonic crystal fiber. Optik 2017, 131, 687–696. [Google Scholar] [CrossRef]
- Sen, S.; Chowdhury, S.; Ahmed, K.; Asaduzzaman, S. Design of a porous cored hexagonal photonic crystal fiber based optical sensor with high relative sensitivity for lower operating wavelength. Photonic Sens. 2017, 7, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Eid, M.M.A.; Habib, M.A.; Anower, M.S.; Rashed, A.N.Z. Highly sensitive nonlinear photonic crystal fiber based sensor for chemical sensing applications. Microsyst. Technol. 2020. [Google Scholar] [CrossRef]
- Arif, M.F.H.; Asaduzzaman, S.; Ahmed, K.; Morshed, M. High sensitive PCF based chemical sensor for ethanol detection. In Proceedings of the 5th International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, 13–14 May 2016; pp. 6–9. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Am. 1965, 55, 1205. [Google Scholar] [CrossRef]
- Hale, G.M.; Querry, M.R. Bladder cancers respond to EGFR inhibitors. Cancer Discov. 2014, 4, 980–981. [Google Scholar] [CrossRef] [Green Version]
- Moutzouris, K.; Papamichael, M.; Betsis, S.C.; Stavrakas, I.; Hloupis, G.; Triantis, D. Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Appl. Phys. B Lasers Opt. 2014, 116, 617–622. [Google Scholar] [CrossRef]
- Akowuah, E.K.; Gorman, T.; Ademgil, H.; Haxha, S.; Robinson, G.K.; Oliver, J.V. Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J. Quantum Electron. 2012, 48, 1403–1410. [Google Scholar] [CrossRef]
- Yakasai, I.K.; Abas, P.E.; Ali, S.; Begum, F. Modelling and simulation of a porous core photonic crystal fibre for terahertz wave propagation. Opt. Quantum Electron. 2019, 51. [Google Scholar] [CrossRef]
- Yakasai, I.; Abas, P.E.; Kaijage, S.F.; Caesarendra, W.; Begum, F. Proposal for a quad-elliptical photonic crystal fiber for terahertz wave guidance and sensing chemical warfare liquids. Photonics 2019, 6, 78. [Google Scholar] [CrossRef] [Green Version]
- Begum, F.; Namihira, Y.; Kinjo, T.; Kaijage, S. Supercontinuum generation in photonic crystal fibres at 1.06, 1.31, and 1.55 m wavelengths. Electron. Lett. 2010, 46, 1518–1520. [Google Scholar] [CrossRef]
- Begum, F.; Abas, P.E. Near infrared supercontinuum generation in silica based photonic crystal fiber. Prog. Electromagn. Res. C 2019, 89, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.F.H.; Hossain, M.M.; Islam, N.; Khaled, S.M. A nonlinear photonic crystal fiber for liquid sensing application with high birefringence and low confinement loss. Sens. Bio-Sens. Res. 2019, 22, 100252. [Google Scholar] [CrossRef]
- Begum, F.; Namihira, Y.; Razzak, S.M.A.; Kaijage, S.F.; Hai, N.H.; Miyagi, K.; Higa, H.; Zou, N. Flattened chromatic dispersion in square photonic crystal fibers with low confinement losses. Opt. Rev. 2009, 16, 54–58. [Google Scholar] [CrossRef]
- Hossain, M.; Podder, E.; Adhikary, A.; Al-Mamun, A. Optimized Hexagonal Photonic Crystal Fibre Sensor for Glucose Sensing. Adv. Res. 2018, 13, 1–7. [Google Scholar] [CrossRef]
- Islam, M.S.; Sultana, J.; Ahmed, K.; Islam, M.R.; Dinovitser, A.; Ng, B.W.-H.; Abbott, D. A Novel Approach for Spectroscopic Chemical Identification Using Photonic Crystal Fiber in the Terahertz Regime. IEEE Sens. J. 2018, 18, 575–582. [Google Scholar] [CrossRef]
- Chowdhury, S.; Sen, S.; Ahmed, K.; Asaduzzaman, S. Design of highly sensible porous shaped photonic crystal fiber with strong confinement field for optical sensing. Optik 2017, 142, 541–549. [Google Scholar] [CrossRef]
- Habib, A.; Anower, S.; Haque, I. Highly sensitive hollow core spiral fiber for chemical spectroscopic applications. Sens. Int. 2020, 1, 100011. [Google Scholar] [CrossRef]
- Rana, S.; Saiful Islam, M.; Faisal, M.; Roy, K.C.; Islam, R.; Kaijage, S.F. Single-mode porous fiber for low-loss polarization maintaining terahertz transmission. Opt. Eng. 2016, 55, 076114. [Google Scholar] [CrossRef]
- Yu, C.-P.; Liou, J. Selectively liquid-filled photonic crystal fibers for optical devices. Opt. Express 2009, 17, 8729. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xu, Y.; Yariv, A. Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl. Phys. Lett. 2004, 85, 5182–5184. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Jin, W.; Demokan, M.S.; Ho, H.L.; Hoo, Y.L.; Zhao, C. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer. Opt. Express 2005, 13, 9014. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, C.M.B.; dos Santos, E.M.; Brito Cruz, C.H.; de Matos, C.J.; Ferreiira, D.S. Lateral access to the holes of photonic crystal fibers—Selective filling and sensing applications. Opt. Express 2006, 14, 8403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Change in Global Parameters | Relative Sensitivity (%) | Confinement Loss (dB/m) | ||||
---|---|---|---|---|---|---|
Water | Ethanol | Benzene | Water | Ethanol | Benzene | |
+2% | 94.29 | 95.86 | 99.59 | 1.73 × 10−11 | 1.41 × 10−12 | 5.82 × 10−16 |
+1% | 94.27 | 95.84 | 99.58 | 1.61 × 10−11 | 1.35 × 10−12 | 5.95 × 10−16 |
Optimum | 94.26 | 95.82 | 99.58 | 1.52 × 10−11 | 1.21 × 10−12 | 6.01 × 10−16 |
−1% | 94.23 | 95.80 | 99.57 | 1.41 × 10−11 | 1.11 × 10−12 | 6.39 × 10−16 |
−2% | 94.21 | 95.77 | 99.57 | 1.32 × 10−11 | 1.04 × 10−12 | 6.51 × 10−16 |
No. of Rings | Structure | Relative Sensitivity (%) | Confinement Loss (dB/m) | Dispersion (ps/nm·km) | Nonlinear Coefficient (W−1km−1) | Numerical Aperture | ||
---|---|---|---|---|---|---|---|---|
Core | Cladding | |||||||
Ref. [10] | 3 | 3 core holes | Circular holes in hexagonal | 59.9 (W) 62.7 (E) 78.8 (B) | ~10−7 (W) ~10−8 (E) ~10−11 (B) | −0.0104 (W) −0.0101 (E) −0.0115 (B) | 99 (W) 109 (E) 138 (B) | - |
Ref. [11] | 5 | 9 core holes | Circular holes in hexagonal | 43.3(W) 44.31 (E) 47.2 (B) | ~10−13 (W) ~10−14 (E) ~10−15 (B) | - | - | - |
Ref. [12] | 3 | 16 core holes | Circular holes in circle | 46.3 (W) 46.5 (E) 46.9 (B) | ~10−9 (W) ~10−9 (E) ~10−10 (B) | - | - | - |
Ref. [13] | 3 | 7 core holes | Circular holes in hexagonal | 47.5(W) 51.6 (E) 54.2 (B) | - | - | 56.1 (W) 56.2 (E) 56.5 (B) | - |
Ref. [14] | 5 | 9 core holes | Circular holes in octagonal | 44.2 (W) 47.3(E) 52.5 (B) | ~10−13 (W) ~10−13 (E) ~10−13 (B) | - | 4.2 (W) 4.4 (E) 4.9 (B) | - |
Ref. [15] | 5 | Porous core | Circular holes in hexagonal | 57.3 (W) 57.7 (E) 57.9 (B) | ~10−8 (W) ~10−9 (E) ~10−9 (B) | - | 9.80(W) 10.4(E) 11.9(B) | - |
Ref. [16] | 5 | 1 core hole | Circular holes in circle | 91.2 (W) 94.0 (E) 97.5 (B) | ~10−11 (W) ~10−13 (E) ~10−10 (B) | - | 53.1 (W) 52.5 (E) 58.9 (B) | 0.284 (W) 0.291 (E) 0.312 (B) |
Proposed PCF | 3 | 1 core hole | Circular holes in hexagonal | 94.26 (W) 95.82(E) 99.58 (B) | ~10−11 (W) ~10−12 (E) ~10−16 (B) | −0.0086 (W) −0.00832 (E) −0.0099 (B) | 84.55 (W) 90.26 (E) 110.39 (B) | 0.3534 (W) 0.3636 (E) 0.3963 (B) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maidi, A.M.; Abas, P.E.; Petra, P.I.; Kaijage, S.; Zou, N.; Begum, F. Theoretical Considerations of Photonic Crystal Fiber with All Uniform-Sized Air Holes for Liquid Sensing. Photonics 2021, 8, 249. https://doi.org/10.3390/photonics8070249
Maidi AM, Abas PE, Petra PI, Kaijage S, Zou N, Begum F. Theoretical Considerations of Photonic Crystal Fiber with All Uniform-Sized Air Holes for Liquid Sensing. Photonics. 2021; 8(7):249. https://doi.org/10.3390/photonics8070249
Chicago/Turabian StyleMaidi, Abdul Mu’iz, Pg Emeroylarffion Abas, Pg Iskandar Petra, Shubi Kaijage, Nianyu Zou, and Feroza Begum. 2021. "Theoretical Considerations of Photonic Crystal Fiber with All Uniform-Sized Air Holes for Liquid Sensing" Photonics 8, no. 7: 249. https://doi.org/10.3390/photonics8070249
APA StyleMaidi, A. M., Abas, P. E., Petra, P. I., Kaijage, S., Zou, N., & Begum, F. (2021). Theoretical Considerations of Photonic Crystal Fiber with All Uniform-Sized Air Holes for Liquid Sensing. Photonics, 8(7), 249. https://doi.org/10.3390/photonics8070249