Extended L-Band InAs/InP Quantum-Dash Laser in Millimeter-Wave Applications
Abstract
:1. Introduction
2. Experimental Setup
2.1. MMW Generation Setup
2.2. MMW Transmission Setup
3. Results and Discussion
3.1. WL and SMF Transmission Performance Analysis
3.2. Hybrid SMF, FSO, and WL Transmission Performance Analysis
3.3. Limitations and Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Glossary
5G | fifth generation |
AWG | arbitrary waveguide |
BER | bit error rate |
BtB | back-to-back |
c | speed of light |
CL | commercial laser |
CP | optical coupler |
CW | continuous wave |
D | fiber dispersion parameter |
DFB | distributed feedback |
DSB | double sideband modulation |
DWG | dual-wavelength generator |
ESA | electrical spectrum analyzer |
EVM | error-vector magnitude |
FEC | forward-error correction |
FP | Fabry–Perot |
FSO | free-space optics |
FSR | free spectral range |
FTTX | fiber-to-the-X |
LD | laser diode |
LNA | low-noise amplifier |
MLL | mode-locked laser |
MMW | ,illimeter-wave |
MZM | Mach-Zehnder modulator |
NRZ | non-return-zero |
OC | optical circulator |
OFC | optical frequency comb |
OOK | on-off-keying |
OSA | optical spectrum analyzer |
OSNR | optical signal-to-noise ratio |
PAM | pulse amplitude modulation |
PBRS | pseudo-random bit sequence |
PC | polarization controller |
PD | photodiode |
PM | phase modulator |
POR | optical received power |
PPP | public private partnership |
QD | quantum dash |
QD-DWL | quantum-dash dual-wavelength laser |
QPSK | quadrature phase-shift keying |
RBW | resolution bandwidth |
RIN | relative intensity noise |
RoF | radio-over-fiber |
SIL | self-injection locking |
SMF | Single-mode fiber |
SMSR | side-mode suppression ratio |
SNR | signal-to-noise ratio |
TBPF | tunable bandpass filter |
TEC | thermoelectric cooler |
VOA | variable optical attenuator |
WL | wireless |
References
- Uwaechia, A.N.; Mahyuddin, N.M. A Comprehensive Survey on Millimeter Wave Communications for Fifth-Generation Wireless Networks: Feasibility and Challenges. IEEE Access 2020, 8, 62367–62414. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; MacCartney, G.R.; Molisch, A.F.; Mellios, E.; Zhang, J. Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks, with a Focus on Propagation Models. IEEE Trans. Antennas Propag. 2017, 65, 6213–6230. [Google Scholar] [CrossRef]
- Gupta, A.; Jha, R.K. A Survey of 5G Network: Architecture and Emerging Technologies. IEEE Access 2015, 3, 1206–1232. [Google Scholar] [CrossRef]
- Nesset, D. PON Roadmap [Invited]. J. Opt. Commun. Netw. 2016, 9, A71–A76. [Google Scholar] [CrossRef]
- Wong, E. Next-Generation Broadband Access Networks and Technologies. J. Lightwave Technol. 2011, 30, 597–608. [Google Scholar] [CrossRef]
- Cui, W.; Shao, T.; Yao, J. Wavelength Reuse in a UWB Over WDM-PON Based on Injection Locking of a Fabry-Pérot Laser Diode and Polarization Multiplexing. J. Lightwave Technol. 2013, 32, 220–227. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, M.; Mu, H.; Tang, Y.; Zhang, J.; Wu, B.; Li, T. Full-duplex broadcast RoF-WDM-PON with self-coherent detection and photonic frequency up/down-conversion using SSB pilot-carrier. Opt. Commun. 2018, 427, 54–60. [Google Scholar] [CrossRef]
- DeSanti, C.; Du, L.; Guarin, J.; Bone, J.; Lam, C.F. Super-PON: An evolution for access networks [Invited]. J. Opt. Commun. Netw. 2020, 12, D66. [Google Scholar] [CrossRef]
- Mallick, K.; Mandal, P.; Mukherjee, R.; Mandal, G.C.; Das, B.; Patra, A.S. Generation of 40 GHz/80 GHz OFDM based MMW source and the OFDM-FSO transport system based on special fine tracking technology. Opt. Fiber Technol. 2020, 54, 102130. [Google Scholar] [CrossRef]
- Li, C.Y.; Lu, H.H.; Chou, C.R.; Hsia, H.M.; Feng, C.Y.; Chen, Y.H.; Huang, Y.T.; Nainggolan, A. A Flexible Bidirectional Fiber-FSO-5G Wireless Convergent System. J. Lightwave Technol. 2021, 39, 1296–1305. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chi, Y.C.; Tsai, C.T.; Wang, H.Y.; Chen, H.Y.; Xu, M.; Chang, G.K.; Lin, G.R. Millimeter-Wave Carrier Embedded Dual-Color Laser Diode for 5G MMW oF Link. J. Lightwave Technol. 2017, 35, 2409–2420. [Google Scholar] [CrossRef]
- Rahim, M.; Zeb, K.; Lu, Z.; Pakulski, G.; Liu, J.; Poole, P.; Song, C.; Barrios, P.; Jiang, W.; Zhang, X. Monolithic InAs/InP quantum dash dual-wavelength DFB laser with ultra-low noise common cavity modes for millimeter-wave applications. Opt. Express 2019, 27, 35368–35375. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jung, D.; Norman, J.C.; Kennedy, M.J.; Gossard, A.C.; Bowers, J.E. 490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si. Electron. Lett. 2018, 54, 432–433. [Google Scholar] [CrossRef]
- Martin, E.P.; Shao, T.; Vujicic, V.; Anandarajah, P.M.; Browning, C.; Llorente, R.; Barry, L.P. 25-Gb/s OFDM 60-GHz Radio Over Fiber System Based on a Gain Switched Laser. J. Lightwave Technol. 2015, 33, 1635–1643. [Google Scholar] [CrossRef]
- Chao, R.L.; Liang, L.; Shi, J.W.; Komljenovic, T.; Hulme, J.; Kennedy, M.J.; Bowers, J.E. Fully Integrated Photonic Millimeter-Wave Tracking Generators on the Heterogeneous III–V/Si Platform. IEEE Photonics Technol. Lett. 2018, 30, 919–922. [Google Scholar] [CrossRef]
- Carpintero, G.; Hisatake, S.; De Felipe, D.; Guzmán, R.; Nagatsuma, T.; Keil, N. Wireless Data Transmission at Terahertz Carrier Waves Generated from a Hybrid InP-Polymer Dual Tunable DBR Laser Photonic Integrated Circuit. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Shemis, M.A.; Alkhazraji, E.; Ragheb, A.M.; Khan, M.T.A.; Esmail, M.; Fathallah, H.; Alshebeili, S.A. Broadly Tunable Self-injection Locked InAs/InP Quantum-dash Laser Based Fiber/FSO/Hybrid Fiber-FSO Communication at 1610 nm. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Brendel, F.; Poette, J.; Cabon, B.; Zwick, T.; Van Dijk, F.; Lelarge, F.; Accard, A. Chromatic Dispersion in 60 GHz Radio-Over-Fiber Networks Based on Mode-Locked Lasers. J. Lightwave Technol. 2011, 29, 3810–3816. [Google Scholar] [CrossRef]
- Elwan, H.H.; Poette, J.; Cabon, B. Simplified Chromatic Dispersion Model Applied to Ultrawide Optical Spectra for 60 GHz Radio-Over-Fiber Systems. J. Lightwave Technol. 2019, 37, 5115–5121. [Google Scholar] [CrossRef]
- Elwan, H.H.; Khayatzadeh, R.; Poette, J.; Cabon, B. Impact of Relative Intensity Noise on 60-GHz Radio-Over-Fiber Wireless Transmission Systems. J. Lightwave Technol. 2016, 34, 4751–4757. [Google Scholar] [CrossRef]
- Rosales, R.; Charbonnier, B.; Merghem, K.; Van Dijk, F.; Lelarge, F.; Martínez, A.; Ramdane, A. InAs/InP quantum dash based mode locked lasers for 60 GHz radio over fiber applications. In Proceedings of the 2012 International Conference on Indium Phosphide and Related Materials, Santa Barbara, CA, USA, 27–30 August 2012; pp. 185–187. [Google Scholar]
- Delmade, A.; Browning, C.; Verolet, T.; Poette, J.; Farhang, A.; Elwan, H.H.; Koilpillai, R.D.; Aubin, G.; Lelarge, F.; Ramdane, A.; et al. Optical Heterodyne Analog Radio-Over-Fiber Link for Millimeter-Wave Wireless Systems. J. Lightwave Technol. 2021, 39, 465–474. [Google Scholar] [CrossRef]
- Fice, M.J.; Rouvalis, E.; Van Dijk, F.; Accard, A.; Lelarge, F.; Renaud, C.C.; Carpintero, G.; Seeds, A.J. 146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system. Opt. Express 2012, 20, 1769–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeb, K.; Jiang, W.; Zhang, X.; Lu, Z.; Liu, J.; Rahim, M.; Pakulski, G.; Poole, P.; Mao, Y.; Song, C.; et al. Photonic Generation of Spectrally Pure Millimeter-Wave Signals for 5G Applications. In Proceedings of the 2019 International Topical Meeting on Microwave Photonics (MWP), Ottawa, ON, Canada, 7–10 October 2019; pp. 1–4. [Google Scholar]
- Mandal, G.C.; Mukherjee, R.; Das, B.; Patra, A.S. A full-duplex WDM hybrid fiber-wired/fiber-wireless/fiber-VLC/fiber-IVLC transmission system based on a self-injection locked quantum dash laser and a RSOA. Opt. Commun. 2018, 427, 202–208. [Google Scholar] [CrossRef]
- Tareq, Q.; Alkhazraji, E.; Ragheb, A.; Esmail, M.; Fathallah, H.; Alshebeili, S.; Khan, M.Z.M. Wireless Transmission of Millimeter Waves Generated by L-band InAs/InP Quantum-dash Laser. In Proceedings of the 2020 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 28 September–1 October 2020; pp. 1–2. [Google Scholar]
- Liu, G.; Lu, Z.; Liu, J.; Mao, Y.; Vachon, M.; Song, C.; Barrios, P.; Poole, P.J. Passively mode-locked quantum dash laser with an aggregate 5.376 Tbit/s PAM-4 transmission capacity. Opt. Express 2020, 28, 4587–4593. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.T.; Lin, C.H.; Lin, C.T.; Chi, Y.C.; Lin, G.R. 60-GHz Millimeter-wave Over Fiber with Directly Modulated Dual-mode Laser Diode. Sci. Rep. 2016, 6, 27919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beas, J.; Castanon, G.; Aldaya, I.; Aragon-Zavala, A.; Campuzano, G. Millimeter-Wave Frequency Radio over Fiber Systems: A Survey. IEEE Commun. Surv. Tutor. 2013, 15, 1593–1619. [Google Scholar] [CrossRef]
- Shao, T.; Martin, E.; Anandarajah, P.M.; Browning, C.; Vujicic, V.; Llorente, R.; Barry, L.P. Chromatic Dispersion-Induced Optical Phase Decorrelation in a 60 GHz OFDM-RoF System. IEEE Photonics Technol. Lett. 2014, 26, 2016–2019. [Google Scholar] [CrossRef]
Source | Receiver Sensitivity POR (dBm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
WL | Hybrid-WL | Hybrid-FSO | ||||||||
0 m | 2 m | 4 m | 6 m | 0 m | 2 m | 4 m | 6 m | 0 m | 2 m | |
CL-DWL (28 GHz) | ~−9.4 | - | ~−1.6 | - | ~−7.5 | - | ~−0.5 | - | - | - |
QD-DWL (28 GHz) | ~−7.9 | ~−2.9 | ~−0.2 | ~2.8 | ~−5.1 | ~−1.3 | ~0.7 | ~3.3 | - | - |
QD-DWL (30 GHz) | - | - | - | - | - | - | - | - | ~−7.3 | ~−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragheb, A.M.; Tareq, Q.; Alkhazraji, E.; Esmail, M.A.; Alshebeili, S.; Khan, M.Z.M. Extended L-Band InAs/InP Quantum-Dash Laser in Millimeter-Wave Applications. Photonics 2021, 8, 167. https://doi.org/10.3390/photonics8050167
Ragheb AM, Tareq Q, Alkhazraji E, Esmail MA, Alshebeili S, Khan MZM. Extended L-Band InAs/InP Quantum-Dash Laser in Millimeter-Wave Applications. Photonics. 2021; 8(5):167. https://doi.org/10.3390/photonics8050167
Chicago/Turabian StyleRagheb, Amr M., Qazi Tareq, Emad Alkhazraji, Maged A. Esmail, Saleh Alshebeili, and Mohammed Zahed Mustafa Khan. 2021. "Extended L-Band InAs/InP Quantum-Dash Laser in Millimeter-Wave Applications" Photonics 8, no. 5: 167. https://doi.org/10.3390/photonics8050167
APA StyleRagheb, A. M., Tareq, Q., Alkhazraji, E., Esmail, M. A., Alshebeili, S., & Khan, M. Z. M. (2021). Extended L-Band InAs/InP Quantum-Dash Laser in Millimeter-Wave Applications. Photonics, 8(5), 167. https://doi.org/10.3390/photonics8050167