Effect of Carrier-Transporting Layer on Blue Phosphorescent Organic Light-Emitting Diodes
Abstract
:1. Introduction
2. Experiment
OLED Fabrication and Measurement
3. Results
3.1. Electron Transporting Layer
3.2. Thickness of ETL
3.3. Hole Transporting Layer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Andrade, B.W.; Forrest, S.R. White organic light-emitting devices for solid-state lighting. Adv. Mater. 2004, 16, 1585–1595. [Google Scholar] [CrossRef]
- Kanno, H.; Giebink, N.C.; Sun, Y.; Forrest, S.R. Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters. Appl. Phys. Lett. 2006, 89, 023503. [Google Scholar] [CrossRef]
- Krummacher, B.C.; Choong, V.E.; Mathai, M.K.; Choulis, S.A.; So, F.; Jermann, F.; Fiedler, T.; Zachau, M. Highly efficient white organic light-emitting diode. Appl. Phys. Lett. 2006, 88, 113506. [Google Scholar] [CrossRef]
- D’Andrade, B.W.; Holmes, R.J.; Forrest, S.R. Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer. Adv. Mater. 2004, 16, 624–628. [Google Scholar] [CrossRef]
- Al Attar, H.A.; Monkman, A.P. Dopant effect on the charge injection, transport, and device Efficiency of an electrophosphorescent polymeric light-emitting device. Adv. Funct. Mater. 2006, 16, 2231–2242. [Google Scholar] [CrossRef]
- Lee, J.H.; Chen, C.H.; Lee, P.H.; Lin, H.Y.; Leung, M.K.; Chiu, T.L.; Lin, C.F. Blue organic light-emitting diodes: Current status, challenges, and future outlook. J. Mater. Chem. C 2019, 7, 5874–5888. [Google Scholar] [CrossRef]
- Lee, J.H.; Chen, C.H.; Lin, B.Y.; Lan, Y.H.; Huang, Y.M.; Chen, N.J.; Huang, J.J.; Volyniuk, D.; Keruckiene, R.; Grazulevicius, J.V.; et al. Bistriazoles with a biphenyl core derivative as an electron-favorable bipolar host of efficient blue phosphorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces 2020, 12, 49895–49904. [Google Scholar] [CrossRef] [PubMed]
- Forrest, S.R. Waiting for Act 2: What lies beyond organic light-emitting diode (OLED) displays for organic electronics? Nanophotonics 2021, 10, 31–40. [Google Scholar] [CrossRef]
- Bae, H.W.; Kim, G.W.; Lampande, R.; Park, J.H.; Ko, I.J.; Yu, H.J.; Lee, C.Y.; Kwon, J.H. Efficiency enhancement in fluorescent deep-blue OLEDs by boosting singlet exciton generation through triplet fusion and charge recombination rate. Org. Electron. 2019, 70, 1–6. [Google Scholar] [CrossRef]
- Jung, J.H.; Ha, M.Y.; Park, D.Y.; Lee, M.J.; Choi, S.J.; Moon, D.G. Effect of hole transporting materials on the emission characteristics of soluble processed organic light-emitting devices on the plastic substrate. Mol. Cryst. Liq. Cryst. 2017, 644, 214–220. [Google Scholar] [CrossRef]
- González-Urbina, L.; Perez-Moreno, J.; Clays, K.; Kolaric, B. Phosphorescence emission from BAlq by forced intersystem crossing in a colloidal photonic crystal. Mol. Phys. 2016, 114, 2248–2252. [Google Scholar] [CrossRef]
- Giebeler, C.; Antoniadis, H.; Bradley, D.D.C.; Shirota, Y. Influence of the hole transport layer on the performance of organic light-emitting diodes. J. Appl. Phys. 1999, 85, 608–615. [Google Scholar] [CrossRef]
- Liu, L.; Li, S.; Zhou, Y.M.; Liu, L.Y.; Cao, X.A. High-current stressing of organic light-emitting diodes with different electron-transport materials. Microelectron. Reliab. 2017, 71, 106–110. [Google Scholar] [CrossRef]
- Kido, J.; Ohtaki, C.; Hongawa, K.; Okuyama, K.; Nagai, K. 1, 2, 4-triazole derivative as an electron transport layer in organic electroluminescent devices. Jpn. J. Appl. Phys. 1993, 32, L917. [Google Scholar] [CrossRef]
- Kido, J.; Hongawa, K.; Okuyama, K.; Nagai, K. Bright blue electroluminescence from poly (N-vinylcarbazole). Appl. Phys. Lett. 1993, 63, 2627–2629. [Google Scholar] [CrossRef]
- Kido, J.; Hongawa, K.; Okuyama, K.; Nagai, K. White light-emitting organic electroluminescent devices using the poly (N-vinylcarbazole) emitter layer doped with three fluorescent dyes. Appl. Phys. Lett. 1994, 64, 815–817. [Google Scholar] [CrossRef]
- Burrows, P.E.; Forrest, S.R.; Thompson, M.E. Prospects and applications for organic light-emitting devices. Curr. Opin. Solid State Mater. Sci. 1997, 2, 236–243. [Google Scholar] [CrossRef]
- Kim, B.S.; Kim, T.M.; Choi, M.S.; Shim, H.S.; Kim, J.J. Fully vacuum–processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers. Org. Electron. 2015, 17, 102–106. [Google Scholar] [CrossRef]
- Li, P.; Wu, B.; Yang, Y.C.; Huang, H.S.; De Yang, X.; Zhou, G.D.; Song, Q.L. Improved charge transport ability of polymer solar cells by using NPB/MoO3 as anode buffer layer. Sol. Energy 2018, 170, 212–216. [Google Scholar] [CrossRef]
- Dong, S.C.; Xu, L.; Tang, C.W. Chemical degradation mechanism of TAPC as hole transport layer in blue phosphorescent OLED. Org. Electron. 2017, 42, 379–386. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, W.; Yao, J.; Sun, Q.; Dai, Y.; Chen, J.; Yang, D.; Qiao, X.F.; Ma, D. Highly efficient charge generation and injection in HAT-CN/TAPC heterojunction for high efficiency tandem organic light-emitting diodes. Org. Electron. 2020, 83, 105745. [Google Scholar] [CrossRef]
- Xiao, L.; Su, S.J.; Agata, Y.; Lan, H.; Kido, J. Nearly 100% internal quantum efficiency in an organic blue-light electrophosphorescent device using a weak electron transporting material with a wide energy gap. Adv. Mater. 2009, 21, 1271–1274. [Google Scholar] [CrossRef]
- Chen, H.F.; Chi, L.C.; Hung, W.Y.; Chen, W.J.; Hwu, T.Y.; Chen, Y.H.; Chou, S.H.; Mondal, E.; Liu, Y.H.; Wong, K.T. Carbazole and benzimidazole/oxadiazole hybrids as bipolar host materials for sky blue, green, and red PhOLEDs. Org. Electron. 2012, 13, 2671–2681. [Google Scholar] [CrossRef]
- Hung, W.Y.; Chen, Z.W.; You, H.W.; Fan, F.C.; Chen, H.F.; Wong, K.T. Efficient carrier-and exciton-confining device structure that enhances blue PhOLED efficiency and reduces efficiency roll-off. Org. Electron. 2011, 12, 575–581. [Google Scholar] [CrossRef]
- Su, S.J.; Chiba, T.; Takeda, T.; Kido, J. Pyridine-containing triphenylbenzene derivatives with high electron mobility for highly efficient phosphorescent OLEDs. Adv. Mater. 2008, 20, 2125–2130. [Google Scholar] [CrossRef]
- Yu, F.X.; Zhang, Y.; Xiong, Z.Y.; Ma, X.J.; Chen, P.; Xiong, Z.H.; Gao, C.H. Full coverage all-inorganic cesium lead halide perovskite film for high-efficiency light-emitting diodes assisted by 1, 3, 5-tri (m-pyrid-3-yl-phenyl) benzene. Org. Electron. 2017, 50, 480–484. [Google Scholar] [CrossRef]
- Lin, H.W.; Lu, C.W.; Lin, L.Y.; Chen, Y.H.; Lin, W.C.; Wong, K.T.; Lin, F. Pyridine-based electron transporting materials for highly efficient organic solar cells. J. Mater. Chem. A 2013, 1, 1770–1777. [Google Scholar] [CrossRef]
- Zhao, Z.; Yu, G.; Chang, Q.; Liu, X.; Liu, Y.; Wang, L.; Liu, Z.; Bian, Z.; Liu, W.; Huang, C. Carbazolylphosphines and carbazolylphosphine oxides: Facilely synthesized host materials with tunable mobilities and high triplet energy levels for blue phosphorescent OLEDs. J. Mater. Chem. C 2017, 5, 7344–7351. [Google Scholar] [CrossRef]
- Gebeyehu, D.; Walzer, K.; He, G.; Pfeiffer, M.; Leo, K.; Brandt, J.; Stößel, P.; Vestweber, H. Highly efficient deep-blue organic light-emitting diodes with doped transport layers. Synth. Met. 2005, 148, 205–211. [Google Scholar] [CrossRef]
- Wu, I.W.; Wang, P.S.; Tseng, W.H.; Chang, J.H.; Wu, C.I. Correlations of impedance–voltage characteristics and carrier mobility in organic light emitting diodes. Org. Electron. 2012, 13, 13–17. [Google Scholar] [CrossRef]
- Lee, C.W.; Lee, J.Y. A hole transport material with ortho-linked terphenyl core structure for high power efficiency in blue phosphorescent organic light-emitting diodes. Org. Electron 2014, 15, 399–404. [Google Scholar] [CrossRef]
- Huang, J.J.; Hung, Y.H.; Ting, P.L.; Tsai, Y.N.; Gao, H.J.; Chiu, T.L.; Lee, J.H.; Chen, C.L.; Chou, P.T.; Leung, M.K. Orthogonally substituted benzimidazole-carbazole benzene as universal hosts for phosphorescent organic light-emitting diodes. Org. Lett. 2016, 18, 672–675. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.Y.; Lee, J.H.; Chen, C.H.; Chen, P.H.; Wang, P.S.; Lin, C.E.; Lin, B.Y.; Lan, Y.H.; Hsieh, Y.H.; Huang, J.J.; et al. Carrier transport and recombination mechanism in blue phosphorescent organic light-emitting diode with hosts consisting of cabazole-and triazole-moiety. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Rhee, S.H.; Yook, K.S.; Kim, S.H.; Ryu, S.Y. Configuration Effects of Exciton Blocking Layer with Low Electron Mobility’s Electron Transport Layer in Blue Phosphorescent Organic Light-Emitting Diodes. ECS J. Solid State Sci. Technol. 2016, 5, R1. [Google Scholar] [CrossRef]
- Rhee, S.H.; Bong Nam, K.; Kim, C.S.; Song, M.; Cho, W.; Jin, S.H.; Ryu, S.Y. Effect of electron mobility of the electron transport layer on fluorescent organic light-emitting diodes. ECS Solid State Lett. 2014, 3, R19. [Google Scholar] [CrossRef]
- Rhee, S.H.; Kim, C.S.; Song, M.; Chung, K.B.; Ryu, S.Y. Effects of Position of Exciton-Blocking Layer on Characteristics of Blue Phosphorescent Organic Light-Emitting Diodes. ECS Solid State Lett. 2014, 3, R49. [Google Scholar] [CrossRef]
Device | HTL | EBL | EML | ETL |
---|---|---|---|---|
A | NPB (50 nm) | mCP (10 nm) | TAZ: 15% Firpic (40 nm) | TAZ (45 nm) |
B | TmPyPB (45 nm) | |||
C | DPPS (45 nm) | |||
D | TAZ (40 nm) | |||
E | TAZ (50 nm) | |||
F | TAPC (50 nm) | TAZ 45 nm |
Device | Voltage 1 (V) | Luminance 2 (cd/m2) | CE (cd/A) | EQE (%) |
---|---|---|---|---|
A | 10.56 | 4441 | 45.93 2, 25.95 3 | 20.02 2, 10.98 3 |
B | 8.61 | 5558 | 44.65 2, 26.44 3 | 19.66 2, 13.22 3 |
C | 10.44 | 3393 | 43.89 2, 25.60 3 | 18.63 2, 10.62 3 |
D | 9.72 | 5083 | 42.57 2, 25.12 3 | 17.41 2, 9.98 3 |
E | 10.77 | 3952 | 45.66 2, 25.82 3 | 19.07 2, 10.52 3 |
F | 10.34 | 4249 | 44.14 2, 25.14 3 | 17.77 2, 9.77 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, B.-Y.; Chen, C.-H.; Lin, T.-C.; Lee, J.-H.; Chiu, T.-L. Effect of Carrier-Transporting Layer on Blue Phosphorescent Organic Light-Emitting Diodes. Photonics 2021, 8, 124. https://doi.org/10.3390/photonics8040124
Lin B-Y, Chen C-H, Lin T-C, Lee J-H, Chiu T-L. Effect of Carrier-Transporting Layer on Blue Phosphorescent Organic Light-Emitting Diodes. Photonics. 2021; 8(4):124. https://doi.org/10.3390/photonics8040124
Chicago/Turabian StyleLin, Bo-Yen, Chia-Hsun Chen, Tzu-Chan Lin, Jiun-Haw Lee, and Tien-Lung Chiu. 2021. "Effect of Carrier-Transporting Layer on Blue Phosphorescent Organic Light-Emitting Diodes" Photonics 8, no. 4: 124. https://doi.org/10.3390/photonics8040124
APA StyleLin, B. -Y., Chen, C. -H., Lin, T. -C., Lee, J. -H., & Chiu, T. -L. (2021). Effect of Carrier-Transporting Layer on Blue Phosphorescent Organic Light-Emitting Diodes. Photonics, 8(4), 124. https://doi.org/10.3390/photonics8040124