Comparison of Two- and Three-Beam Interference Pattern Generation in Structured Illumination Microscopy
Abstract
:1. Introduction
2. Theory
2.1. The Excitation Fringe Patterns Formed by Two-Beam and Three-Beam Interference
2.2. The SIM Images Reconstructed from Two-Beam and Three-Beam Interference Illumination
2.3. Assessment of the Optical Sectioning Capability
3. Materials and Methods
3.1. Fluorescent Microspheres Sample Preparation
3.2. Biological Sample Preparation
3.3. Structured Illumination Microscopy System Setup
4. Results
4.1. Optical Sectioning Comparison between Two-Beam and Three-Beam Interference Mode
4.2. Two-Beam Interference Mode Provides Fast Imaging Capability
4.3. Three-Beam Interference Mode Provides Great Volumetric Imaging Capability
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Webb, R.H. Confocal optical microscopy. Rep. Prog. Phys. 1996, 59, 427–471. [Google Scholar] [CrossRef]
- Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2, 932–940. [Google Scholar] [CrossRef]
- Stelzer, E.H.K. Light-sheet fluorescence microscopy for quantitative biology. Nat. Methods 2015, 12, 23–26. [Google Scholar] [CrossRef]
- Huang, X.; Fan, J.; Li, L.; Liu, H.; Wu, R.; Wu, Y.; Wei, L.; Mao, H.; Lal, A.; Xi, P.; et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol. 2018, 36, 451–459. [Google Scholar] [CrossRef]
- Wu, Y.; Shroff, H. Faster, sharper, and deeper: Structured illumination microscopy for biological imaging. Nat. Methods 2018, 15, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 2000, 198, 82–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Li, Y.; Liu, W.; Lal, A.; Jiang, S.; Jin, D.; Yang, H.; Wang, S.; Zhanghao, K.; Xi, P. Structured illumination microscopy using digital micro-mirror device and coherent light source. Appl. Phys. Lett. 2020, 116, 233702. [Google Scholar] [CrossRef]
- Zhuang, Z.; Ho, H.P. Application of digital micromirror devices (DMD) in biomedical instruments. J. Innov. Opt. Health Sci. 2020, 13, 2030011. [Google Scholar] [CrossRef]
- Dan, D.; Lei, M.; Yao, B.; Wang, W.; Winterhalder, M.; Zumbusch, A.; Qi, Y.; Xia, L.; Yan, S.; Yang, Y.; et al. DMD-based LED-illumination Super-resolution and optical sectioning microscopy. Sci. Rep. 2013, 3, 1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Jiang, T.; Li, A.; Hu, B.; Feng, Z.; Gong, H.; Zeng, S.; Luo, Q. Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device. J. Biomed. Opt. 2013, 18, 060503. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, M.G.L.; Shao, L.; Carlton, P.M.; Wang, C.J.R.; Golubovskaya, I.N.; Cande, W.Z.; Agard, D.A.; Sedat, J.W. Three-Dimensional Resolution Doubling in Wide-Field Fluorescence Microscopy by Structured Illumination. Biophys. J. 2008, 94, 4957–4970. [Google Scholar] [CrossRef] [Green Version]
- Dan, D.; Yao, B.; Lei, M. Structured illumination microscopy for super-resolution and optical sectioning. Chin. Sci. Bull. 2014, 59, 1291–1307. [Google Scholar] [CrossRef]
- Chang, B.-J.; Tang, W.-C.; Liu, Y.-T.; Tsai, Y.-C.; Tsao, C.; Chen, P.; Chen, B.-C. Two-beam interference lattice lightsheet for structured illumination microscopy. J. Phys. D Appl. Phys. 2020, 53, 044005. [Google Scholar] [CrossRef]
- Doblas, A.; Shabani, H.; Saavedra, G.; Preza, C. Tunable-frequency three-dimensional structured illumination microscopy with reduced data-acquisition. Opt. Express 2018, 26, 30476–30491. [Google Scholar] [CrossRef]
- Neil, M.A.A.; Juškaitis, R.; Wilson, T. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett. 1997, 22, 1905–1907. [Google Scholar] [CrossRef]
- Neil, M.A.A.; Juškaitis, R.; Wilson, T. Real time 3D fluorescence microscopy by two beam interference illumination. Opt. Commun. 1998, 153, 1–4. [Google Scholar] [CrossRef]
- Zhanghao, K.; Liu, W.; Li, M.; Wu, Z.; Wang, X.; Chen, X.; Shan, C.; Wang, H.; Chen, X.; Dai, Q.; et al. High-dimensional super-resolution imaging reveals heterogeneity and dynamics of subcellular lipid membranes. Nat. Commun. 2020, 11, 5890. [Google Scholar] [CrossRef]
- Silvia, S.; Kengyeh, K.C.; Daryl, L.; Nenad, B.; Timothy, N.F.; Claire, H.; Aaron, C.B.; Satish, K.S.; Jerome, M. Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexible fiber bundle. J. Biomed. Opt. 2009, 14, 030502. [Google Scholar] [CrossRef] [Green Version]
- Zachary, R.H.; Charles, A.D. Single-image structured illumination using Hilbert transform demodulation. J. Biomed. Opt. 2017, 22, 056011. [Google Scholar] [CrossRef]
- Wang, H.; Liu, W.; Hu, Z.; Li, X.; Hong, B. One-shot optical sectioning structured illumination microscopy. In Proceedings of the Applied Optics and Photonics China (AOPC2019), Beijing, China, 7–9 July 2019. [Google Scholar]
- Pal, S.K.; Senthilkumaran, P. Cultivation of lemon fields. Opt. Express 2016, 24, 28008–28013. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.K.; Senthilkumaran, P. Lattice of C points at intensity nulls. Opt. Lett. 2018, 43, 1259–1262. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, Y.; Lang, S.; Wang, H.; Hu, H.; Wang, J.; Gong, Y. Structured illumination microscopy based on asymmetric three-beam interference. J. Innov. Opt. Health Sci. 2020, 14, 2050027. [Google Scholar] [CrossRef]
- Shabani, H.; Doblas, A.; Saavedra, G.; Sanchez-Ortiga, E.; Preza, C. Improvement of two-dimensional structured illumination microscopy with an incoherent illumination pattern of tunable frequency. Appl. Opt. 2018, 57, B92–B101. [Google Scholar] [CrossRef] [PubMed]
ROI Pixel | Binning | Effective Pixel | DMD Exposure Time (ms) | Times @ Images | Raw Frame (fps) | Restore Frame (fps) |
---|---|---|---|---|---|---|
2048 × 2048 | 2 × 2 | 1024 × 1024 | 11 | 6.72 s @ 600 p | 89.3 | 29.7 |
1024 × 1024 | 2 × 2 | 512 × 512 | 6 | 3.72 s @ 600 p | 161.3 | 53.7 |
512 × 512 | 1 × 1 | 512 × 512 | 3.5 | 2.22 s @ 600 p | 270.3 | 90.1 |
256 × 256 | 1 × 1 | 256 × 256 | 2.26 | 1.48 s @ 600 p | 405.4 | 135.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, J.; Liu, L.; Chen, T.; Xia, X.; Li, H.; Zheng, W. Comparison of Two- and Three-Beam Interference Pattern Generation in Structured Illumination Microscopy. Photonics 2021, 8, 526. https://doi.org/10.3390/photonics8120526
Liao J, Liu L, Chen T, Xia X, Li H, Zheng W. Comparison of Two- and Three-Beam Interference Pattern Generation in Structured Illumination Microscopy. Photonics. 2021; 8(12):526. https://doi.org/10.3390/photonics8120526
Chicago/Turabian StyleLiao, Jiuling, Lina Liu, Tingai Chen, Xianyuan Xia, Hui Li, and Wei Zheng. 2021. "Comparison of Two- and Three-Beam Interference Pattern Generation in Structured Illumination Microscopy" Photonics 8, no. 12: 526. https://doi.org/10.3390/photonics8120526