Applications of THz Spectral Imaging in the Detection of Agricultural Products
Abstract
:1. Introduction
2. THz Spectral Imaging Technique
2.1. Principle
2.2. Optical Parameter Extraction
3. Application of THz Spectral Imaging for Detection of Agricultural Products
3.1. Internal Composition Detection
3.2. Seed Classification
3.3. Pesticide Residues Detection
3.4. Foreign Body Detection and Packaging Inspection
4. Existing Problems
4.1. Water Absorption
4.2. Scattering Effect
4.3. High Hardware Equipment Cost
4.4. Low Detection Sensitivity
5. Outlook
5.1. THz Source and Detector Study
5.2. THz Technology Combined with Deep Learning Algorithm
5.3. Establish THz Standard Database for Agricultural Products
5.4. Application of Metamaterials to Increase Detection Sensitivity
5.5. Optimization of the THz Software System
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Afsah-Hejri, L.; Akbari, E.; Toudeshki, A.; Homayouni, T.; Alizadeh, A.; Ehsani, R. Terahertz spectroscopy and imaging: A review on agricultural applications. Comput. Electron. Agric. 2020, 177, 105628. [Google Scholar] [CrossRef]
- Wang, K.Q.; Sun, D.W.; Pu, H.B. Emerging non-destructive terahertz spectroscopic imaging technique: Principle and applications in the agri-food industry. Trends Food Sci. Technol. 2017, 67, 93–105. [Google Scholar] [CrossRef]
- Luo, N.; Wang, D.; Wang, S.-F.; Han, P. Progress in Terahertz Technique for Quality Inspection of Agro-Food Products. Spectrosc. Spectr. Anal. 2019, 39, 349–356. [Google Scholar] [CrossRef]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Ferguson, B.; Zhang, X.-C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Salén, P.; Basini, M.; Bonetti, S.; Hebling, J.; Krasilnikov, M.; Nikitin, A.Y.; Shamuilov, G.; Tibai, Z.; Zhaunerchyk, V.; Goryashko, V. Matter manipulation with extreme terahertz light: Progress in the enabling THz technology. Phys. Rep. 2019, 836–837, 1–74. [Google Scholar] [CrossRef]
- Funk, R.H.W. Biophysical mechanisms complementing classical cell biology. Front. Biosci. (Landmark Ed.) 2018, 23, 921–939. [Google Scholar] [CrossRef]
- Lee, S.Y.; Woo, S.Y.; Chun, H.S. Application of terahertz spectroscopy/imaging technology for food quality and safety management. Food Sci. Ind. 2018, 51, 26–36. [Google Scholar]
- Puc, U.; Abina, A.; Rutar, M.; Zidansek, A.; Jeglic, A.; Valusis, G. Terahertz spectroscopic identification of explosive and drug simulants concealed by various hiding techniques. Appl. Opt. 2015, 54, 4495–4502. [Google Scholar] [CrossRef]
- Gong, A.; Qiu, Y.; Chen, X.; Zhao, Z.; Xia, L.; Shao, Y. Biomedical applications of terahertz technology. Appl. Spectrosc. Rev. 2020, 55, 418–438. [Google Scholar] [CrossRef]
- Grootendorst, M.R.; Fitzgerald, A.J.; de Koning, S.G.B.; Santaolalla, A.; Portieri, A.; Van Hemelrijck, M.; Young, M.R.; Owen, J.; Cariati, M.; Pepper, M.; et al. Use of a handheld terahertz pulsed imaging device to differentiate benign and malignant breast tissue. Biomed. Opt. Express 2017, 8, 2932–2945. [Google Scholar] [CrossRef] [Green Version]
- Siegel, P.H. Terahertz technology in biology and medicine. In Proceedings of the 2004 IEEE MTT-S International Microwave Symposium Digest, Fort Worth, TX, USA, 8 October 2004. [Google Scholar]
- Browne, M.; Yardimci, N.T.; Scoffoni, C.; Jarrahi, M.; Sack, L. Prediction of leaf water potential and relative water content using terahertz radiation spectroscopy. Plant Direct. 2020, 4, e00197. [Google Scholar] [CrossRef]
- Zhang, Y.-P.; Tang, L.-B.; Liu, Y.-F.; Seng, T.K.; Wu, G.; Hu, W.-D.; Han, F.-Z. The research progress and application of novel terahertz detectors. J. Infrared Millim. Waves 2020, 39, 191–210. [Google Scholar] [CrossRef]
- Van Exter, M.; Fattinger, C.; Grischkowsky, D. Terahertz time-domain spectroscopy of water vapor. Opt. Lett. 1989, 14, 1128–1130. [Google Scholar] [CrossRef]
- Liu, K.; Huang, P.; Zhang, X.-C. Terahertz wave generation from ring-Airy beam induced plasmas and remote detection by terahertz-radiationenhanced- emission-of-fluorescence: A review. Front. Optoelectron. 2019, 12, 117–147. [Google Scholar] [CrossRef]
- Son, J.-H. Principle and applications of terahertz molecular imaging. Nanotechnology 2013, 24, 214001. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, A.J.; Tie, X.; Hackmann, M.J.; Cense, B.; Gibson, A.P.; Wallace, V.P. Co-registered combined OCT and THz imaging to extract depth and refractive index of a tissue-equivalent test object. Biomed. Opt. Express 2020, 11, 1417–1431. [Google Scholar] [CrossRef]
- Zhong, M.; Liu, B.; Li, C.; Wang, Z.; Wei, D.; Zhou, B.; Dai, X.; Xu, Y. Terahertz Spectroscopy and Imaging Detection of Defects in Civil Aircraft Composites. J. Spectrosc. 2020, 2020, 2312936. [Google Scholar] [CrossRef]
- Wang, Q.; Li, X.-Y.; Chang, T.-Y.; Hu, Q.-P.; Bai, J.-P. Terahertz Time-Domain Spectroscopic Study of Aircraft Composite and Matrix Resins. Spectrosc. Spectr. Anal. 2018, 38, 2706–2712. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, S.; Lee, T.-L.; Fancey, K.S.; Mi, J. Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review. Adv. Mech. Eng. 2020, 12. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.S.; He, Y.Z.; Liu, K.; Fan, S.T.; Parrott, E.P.J.; Pickwell-MacPherson, E. Recent advances in terahertz technology for biomedical applications. Quant. Imaging Med. Surg. 2017, 7, 345–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuo-Yong, Z.; Xin, Z.; Chemistry, D.O.; University, C.N. Research and Application of Terahertz Spectroscopy and Imaging Techniques in the Biomedical Field. Spectrosc. Spectr. Anal. 2018, 38, 309–310. [Google Scholar]
- Li, D.; Yang, Z.; Fu, A.; Chen, T.; Wang, H. Detecting melanoma with a terahertz spectroscopy imaging technique. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 234, 118229. [Google Scholar] [CrossRef] [PubMed]
- Kaltenecker, K.; Zhou, B.; Tybussek, K.H.; Engelbrecht, S.; Fischer, B.M. Ultra-broadband THz spectroscopy for sensing and identification for security applications. In Proceedings of the 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz2018), Nagoya, Japan, 29 October 2018. [Google Scholar]
- Garcia-Rial, F.; Montesano, D.; Gomez, I.; Callejero, C.; Bazus, F.; Grajal, J. Combining Commercially Available Active and Passive Sensors Into a Millimeter-Wave Imager for Concealed Weapon Detection. IEEE Trans. Microw. Theory Tech. 2019, 67, 1167–1183. [Google Scholar] [CrossRef]
- Tzydynzhapov, G.; Gusikhin, P.; Muravev, V.; Dremin, A.; Nefyodov, Y.; Kukushkin, I. New Real-Time Sub-Terahertz Security Body Scanner. J. Infrared Millim. Terahertz Waves 2020, 41, 632–641. [Google Scholar] [CrossRef]
- Xu, F.; Mu, Q.D.D.; Li, L.J.; Yang, D.; Xia, B. Nondestructive Evaluation of Rubber Composites Using Terahertz Time Domain Spectroscopy. Fibres Text. East. Eur. 2018, 26, 67–72. [Google Scholar] [CrossRef]
- Hirakawa, Y.; Yasunnoto, Y.; Gondo, T. Evaluation of Rubber Products by Terahertz Time-domain Spectroscopy Carbon Black Dispersion and Vulcanization State. J. Infrared Millim. Terahertz Waves 2020, 41, 414–429. [Google Scholar] [CrossRef]
- Zhai, M.; Locquet, A.; Jung, M.; Woo, D.; Citrin, D.S. Nondestructive characterization of nanoporous alumina films using terahertz scattering imaging. Surf. Coat. Technol. 2021, 408, 126792. [Google Scholar] [CrossRef]
- Wang, C.; Qin, J.Y.; Xu, W.D.; Chen, M.; Xie, L.J.; Ying, Y.B. Terahertz Imaging Applications in Agriculture and Food Engineering: A Review. Trans. Asabe 2018, 61, 411–424. [Google Scholar] [CrossRef]
- Di Girolamo, F.V.; Pagano, M.; Tredicucci, A.; Bitossi, M.; Paoletti, R.; Barzanti, G.P.; Benvenuti, C.; Roversi, P.F.; Toncelli, A. Detection of fungal infections in chestnuts: A terahertz imaging-based approach. Food Control 2021, 123, 107700. [Google Scholar] [CrossRef]
- Hu, J.; Xu, Z.; Li, M.P.; He, Y.; Sun, X.D.; Liu, Y.D. Detection of Foreign-Body in Milk Powder Processing Based on Terahertz Imaging and Spectrum. J. Infrared Millim. Terahertz Waves 2021, 42, 878–892. [Google Scholar] [CrossRef]
- Ren, A.; Zahid, A.; Fan, D.; Yang, X.; Imran, M.A.; Alomainy, A.; Abbasi, Q.H. State-of-the-art in terahertz sensing for food and water security–A comprehensive review. Trends Food Sci. Technol. 2019, 85, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Bowman, T.; El-Shenawee, M.; Campbell, L.K. Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas. Biomed. Opt. Express 2016, 7, 3756–3783. [Google Scholar] [CrossRef] [Green Version]
- Takashi, Y.; Yoichi, K.; Haruyoshi, T.; Hironori, T. Terahertz movie of internal transmission imaging. Opt. Express 2007, 15, 15583–15588. [Google Scholar]
- Shengyang, H.; Ashworth, P.C.; Kan, K.W.; Yang, C.; Wallace, V.P.; Yuan-Ting, Z.; Emma, P.-M. Improved sample characterization in terahertz reflection imaging and spectroscopy. Opt. Express 2009, 17, 3848–3854. [Google Scholar]
- Chen, L.-Q.; Gao, F.; Gong, X.-J.; Yang, J.; Lu, Y.-P.; Liu, W.-Q.; Feng, G.-Z.; Zhang, Y.-D.; Jin, L.; Yu, W.-L. Extraction of refractive indices of materials through transmission terahertz time-domain spectroscopy. J. Infrared Millim. Waves 2013, 32, 160–164. [Google Scholar] [CrossRef]
- Lian, F.Y.; Ge, H.Y.; Ju, X.J.; Zhang, Y.; Fu, M.X. Quantitative Analysis of Trans Fatty Acids in Cooked Soybean Oil Using Terahertz Spectrum. J. Appl. Spectrosc. 2019, 86, 917–924. [Google Scholar] [CrossRef]
- Mumtaz, M.; Mahmood, M.A.; Shahzad, A.; Khan, S.D.; Zia, M.A.; Ahmed, M.; Ahmad, I. Experimental Measurement of Temperature-Dependent Thermo-optical Parameters of Different Types of Olive Oil Using Terahertz Time-Domain Spectroscopy. J. Infrared Millim. Terahertz Waves 2020, 41, 1181–1188. [Google Scholar] [CrossRef]
- Auston, D.H.; Cheung, K.P.; Smith, P.R. Picosecond photoconducting Hertzian dipoles. Appl. Phys. Lett. 1984, 45, 284–286. [Google Scholar] [CrossRef]
- Hawecker, J.; Pistore, V.; Minasyan, A.; Maussang, K.; Palomo, J.; Sagnes, I.; Manceau, J.-M.; Colombelli, R.; Tignon, J.; Mangeney, J.; et al. Cavity-based photoconductive sources for real-time terahertz imaging. Photonics Res. 2020, 8, 858–863. [Google Scholar] [CrossRef]
- Guerboukha, H.; Nallappan, K.; Skorobogatiy, M. Toward real-time terahertz imaging. Adv. Opt. Photonics 2018, 10, 843–938. [Google Scholar] [CrossRef]
- Stantchev, R.I.; Yu, X.; Blu, T.; Pickwell-MacPherson, E. Real-time terahertz imaging with a single-pixel detector. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Serita, K.; Zang, Z.; Murakami, H.; Kawayama, I.; Cassar, Q.; Macgrogan, G.; Guillet, J.-P.; Mounaix, P.; Tonouchi, M. Scanning laser terahertz near-field reflection imaging system. Appl. Phys. Express 2019, 12, 122005. [Google Scholar] [CrossRef]
- Zhi-yong, T.; Wen-jian, W. Progress in real-time imaging based on terahertz quantum-cascade lasers. Chin. Opt. 2017, 10, 68–76. [Google Scholar] [CrossRef]
- Fujita, K.; Jung, S.; Jiang, Y.; Kim, J.H.; Nakanishi, A.; Ito, A.; Hitaka, M.; Edamura, T.; Belkin, M.A. Recent progress in terahertz difference-frequency quantum cascade laser sources. Nanophotonics 2018, 7, 1795–1817. [Google Scholar] [CrossRef]
- Tan, Z.-Y.; Wan, W.-J.; Cao, J.-C. Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors. Chin. Phys. B 2020, 29, 084212. [Google Scholar] [CrossRef]
- Wan, M.; Healy, J.J.; Sheridan, J.T. Terahertz phase imaging and biomedical applications. Opt. Laser Technol. 2020, 122, 105859. [Google Scholar] [CrossRef]
- Rahman, A.; Rahman, A.K. Nanoscale Metrology of Line Patterns on Semiconductor by Continuous Wave Terahertz Multispectral Reconstructive 3-D Imaging Overcoming the Abbe Diffraction Limit. IEEE Trans. Semicond. Manuf. 2019, 32, 7–13. [Google Scholar] [CrossRef]
- Costa, F.B.; Machado, M.A.; Bonfait, G.J.; Vieira, P.; Santos, T.G. Continuous wave terahertz imaging for NDT: Fundamentals and experimental validation. Measurement 2021, 172, 108904. [Google Scholar] [CrossRef]
- Kleine-Ostmann, T.; Knobloch, P.; Koch, M.; Hoffmann, S.; Pierz, K. Compact and Cost-Effective Continuous Wave THz Imaging System. In Proceedings of the Summaries of Papers Presented at the Lasers and Electro-Optics, CLEO’02, Long Beach, CA, USA, 24–24 May 2002. [Google Scholar]
- Wu, D.H.; Graber, B.; Kim, C.; Qadri, S.B.; Garzarella, A. Coherent and incoherent terahertz beams measured from a terahertz photoconductive antenna. Appl. Phys. Lett. 2014, 104, 051126. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, X.H.; Chen, Y.; Chen, J.; Curioni, A.; Andreoni, W.; Nayak, S.K.; Zhang, X.C. A first principle study of terahertz (THz) spectra of acephate. Chem. Phys. Lett. 2008, 452, 59–66. [Google Scholar] [CrossRef]
- Dorney, T.D.; Baraniuk, R.G.; Mittleman, D.M. Material parameter estimation with terahertz time-domain spectroscopy. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2001, 18, 1562–1571. [Google Scholar] [CrossRef] [Green Version]
- Duvillaret, L.; Garet, F.; Coutaz, J.L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2002, 2, 739–746. [Google Scholar] [CrossRef] [Green Version]
- Bassiri, S.; Papas, C.H.; Engheta, N. Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab. J. Opt. Soc. Am. A 1988, 5, 1450–1459. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.-H.; Zhang, Y.; Shi, Z.-G. Enhancement of dim targets in a sea background based on long-wave infrared polarisation features. Image Process. Iet 2018, 12, 2042–2050. [Google Scholar] [CrossRef]
- Ge, H.-Y.; Jiang, Y.-Y.; Lian, F.-Y.; Zhang, Y.; Xia, S.-H. Nondestructive Evaluation of Wheat Quality Using Terahertz Time Domain Spectroscopy. Spectrosc. Spectr. Anal. 2014, 34, 2897–2900. [Google Scholar]
- Cao, Y.; Huang, P.; Chen, J.; Ge, W.; Zhang, G. Qualitative and quantitative detection of liverinjury with terahertz time-domain spectroscopy. Biomed. Opt. Express 2020, 11, 982–993. [Google Scholar] [CrossRef]
- May, R.; Taday, P.F. Crystallization of sucrose monitored by terahertz pulsed spectroscopy. In Proceedings of the 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Mainz, Germany, 1–6 September 2013. [Google Scholar]
- Gua, T.; Ding, Z.; Zhang, D.; Zhou, J.; Chen, X. Evaluation of wheat seeds by terahertz imaging. In Proceedings of the Millimeter Waves & Thz Technology Workshop, Rome, Italy, 9–11 September 2013. [Google Scholar]
- Penkov, N.V.; Goltyaev, M.V.; Astashev, M.E.; Serov, D.A.; Moskovskiy, M.N.; Khort, D.O.; Gudkov, S.V. The Application of Terahertz Time-Domain Spectroscopy to Identification of Potato Late Blight and Fusariosis. Pathogens 2021, 10, 1336. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Li, S.; Zhu, S.P.; Zheng, W.Q.; Xie, Y.; Zhou, S.L.; Hu, M.D.; Miao, Y.J.; Ma, L.K.; Wu, W.J.; et al. Terahertz spectroscopy combined with data dimensionality reduction algorithms for quantitative analysis of protein content in soybeans. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2021, 253, 119571. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-Y.; Ge, H.-y.; Zhang, Y. Quantitative Determination of Maltose Concentration in Wheat by Using Terahertz Imaging. Spectrosc. Spectr. Anal. 2018, 38, 3017–3022. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Ge, H.Y.; Zhang, Y. Quantitative analysis of wheat maltose by combined terahertz spectroscopy and imaging based on Boosting ensemble learning. Food Chem. 2020, 307, 125533. [Google Scholar] [CrossRef]
- Qin, J.; Xie, L.; Ying, Y. Feasibility of Terahertz Time-Domain Spectroscopyto Detect Tetracyclines Hydrochloride in Infant Milk Powder. Anal. Chem. 2014, 86, 11750–11757. [Google Scholar] [CrossRef]
- Afsah-Hejri, L.; Hajeb, P.; Ara, P.; Ehsani, R.J. A Comprehensive Review on Food Applications of Terahertz Spectroscopy and Imaging. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1563–1621. [Google Scholar] [CrossRef] [PubMed]
- Federici, J.F. Review of Moisture and Liquid Detection and Mapping using Terahertz Imaging. J. Infrared Millim. Terahertz Waves 2012, 33, 97–126. [Google Scholar] [CrossRef]
- Ogawa, Y.; Hayashi, S.i.; Kondo, N.; Ninomiya, K.; Otani, C.; Kawase, K. Feasibility on the Quality Evaluation of Agricultural Products with Terahertz Electromagnetic Wave. In Proceedings of the 2006 ASAE Annual Meeting, Portland, OR, USA, 9–12 July 2006. [Google Scholar]
- Nie, P.C.; Qu, F.F.; Lin, L.; Dong, T.; He, Y.; Shao, Y.N.; Zhang, Y. Detection of Water Content in Rapeseed Leaves Using Terahertz Spectroscopy. Sensors 2017, 17, 2830. [Google Scholar] [CrossRef] [Green Version]
- Yasui, T.; Araki, T. Sensitive Measurement of Water Content in dry Material Using Low-Frequency Terahertz Time-Domain Spectroscopy System Equipped with Micro-Structured Photoconductive Antennas. In Proceedings of the European Optical Society: 1st EOS Topical Meeting on Micro and Nano-Optoeletronic Systems, Bremen, Germany, 7–9 December 2011. [Google Scholar]
- Shchepetilnikov, A.V.; Zarezin, A.M.; Muravev, V.M.; Gusikhin, P.A.; Kukushkin, I.V. Quantitative analysis of water content and distribution in plants using terahertz imaging. Opt. Eng. 2020, 59, 061617. [Google Scholar] [CrossRef]
- Zang, Z.; Wang, J.; Cui, H.-L.; Yan, S. Terahertz spectral imaging based quantitative determination of spatial distribution of plant leaf constituents. Plant Methods 2019, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Z.; Yan, S.; Zang, Z.; Fu, Y.; Wei, D.; Cui, H.; Lai, P. Temporal and spatial variability of water status in plant leaves by terahertz imaging. IEEE Trans. Terahertz Ence Technol. 2018, 8, 520–527. [Google Scholar] [CrossRef]
- Wei, X.; Zheng, W.; Zhu, S.; Zhou, S.; Wu, W.; Xie, Z. Application of terahertz spectrum and interval partial least squares method in the identification of genetically modified soybeans. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2020, 238, 118453. [Google Scholar] [CrossRef]
- Luo, H.; Zhu, J.; Xu, W.; Cui, M. Identification of soybean varieties by terahertz spectroscopy and integrated learning method. Optik 2019, 184, 177–184. [Google Scholar] [CrossRef]
- Lu, M.-h.; Shen, J.-l. Identification of maize seeds using terahertz transmitted spectral imaging. Opt. Tech. 2006. [Google Scholar] [CrossRef]
- Qin, B.Y.; Li, Z.; Chen, T.; Chen, Y. Identification of genetically modified cotton seeds by terahertz spectroscopy with MPGA-SVM. Optik 2017, 142, 576–582. [Google Scholar] [CrossRef]
- Liu, W.; Liu, C.; Hu, X.; Yang, J.; Zheng, L. Application of terahertz spectroscopy imaging for discrimination of transgenic rice seeds with chemometrics. Food Chem. 2016, 210, 415–421. [Google Scholar] [CrossRef]
- Jiang, Y.; Ge, H.; Lian, F.; Zhang, Y.; Xia, S. Early detection of germinated wheat grains using terahertz image and chemometrics. Sci. Rep. 2016, 6, 1299. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Ge, H.; Lian, F.; Zhang, Y.; Xia, S. Discrimination of moldy wheat using terahertz imaging combined with multivariate classification. Rsc Adv. 2015, 5, 93979–93986. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Liu, C.; Sun, X.; Yu, L. Study on Pretreatment Methods of Terahertz Time Domain Spectral Image for Maize Seeds. IFAC-PapersOnLine 2018, 51, 206–210. [Google Scholar] [CrossRef]
- Lee, D.K.; Kim, G.; Kim, C.; Jhon, Y.M.; Kim, J.H.; Lee, T.; Son, J.H.; Seo, M. Ultrasensitive Detection of Residual Pesticides Using THz Near-Field Enhancement. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 389–395. [Google Scholar] [CrossRef]
- Nie, P.C.; Qu, F.F.; Lin, L.; He, Y.; Feng, X.P.; Yang, L.; Gao, H.Q.; Zhao, L.H.; Huang, L.X. Trace Identification and Visualization of Multiple Benzimidazole Pesticide Residues on Toona sinensis Leaves Using Terahertz Imaging Combined with Deep Learning. Int. J. Mol. Sci. 2021, 22, 3425. [Google Scholar] [CrossRef]
- Lee, D.-K.; Kim, G.; Son, J.-H.; Seo, M. Highly sensitive terahertz spectroscopy of residual pesticide using nano-antenna. In Proceedings of the Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications IX, International Society for Optics and Photonics, San Francisco, CA, USA, 25 February 2016. [Google Scholar]
- Xu, W.; Xie, L.; Ying, Y. Mechanisms and applications of terahertz metamaterial sensing: A review. Nanoscale 2017, 9, 13864. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Ge, H.; Zhang, Y. Detection of foreign bodies in grain with terahertz reflection imaging. Optik 2019, 181, 1130–1138. [Google Scholar] [CrossRef]
- Shen, Y.; Yin, Y.X.; Li, B.; Zhao, C.J.; Li, G.L. Detection of impurities in wheat using terahertz spectral imaging and convolutional neural networks. Comput. Electron. Agric. 2021, 181, 105931. [Google Scholar] [CrossRef]
- Lee, Y.K.; Choi, S.W.; Han, S.T.; Woo, D.H.; Chun, H.S. Detection of Foreign Bodies in Foods Using Continuous Wave Terahertz Imaging. J. Food Prot. 2012, 75, 179–183. [Google Scholar] [CrossRef]
- Ok, G.; Kim, H.J.; Chun, H.S.; Choi, S.W. Foreign-body detection in dry food using continuous sub-terahertz wave imaging. Food Control 2014, 42, 284–289. [Google Scholar] [CrossRef]
- Ok, G.; Park, K.; Lim, M.-C.; Jang, H.-J.; Choi, S.-W. 140-GHz subwavelength transmission imaging for foreign body inspection in food products. J. Food Eng. 2018, 221, 124–131. [Google Scholar] [CrossRef]
- Shin, H.J.; Choi, S.W.; Ok, G. Qualitative identification of food materials by complex refractive index mapping in the terahertz range. Food Chem. 2018, 245, 282–288. [Google Scholar] [CrossRef]
- Yoneda, S.; Kato, M.; Murate, K.; Kawase, K. THz spectroscopic imaging of reagents hidden in a 56 dB attenuated cardboard box using is-TPG. In Proceedings of the 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, Mexico, 27 August–1 September 2017. [Google Scholar]
- Wang, C.; Zhou, R.; Huang, Y.; Xie, L.; Ying, Y. Terahertz spectroscopic imaging with discriminant analysis for detecting foreign materials among sausages. Food Control 2018, 97, 100–104. [Google Scholar] [CrossRef]
- Shin, H.J.; Oh, S.J.; Lim, M.C.; Choi, S.W.; Ok, G. Dielectric traces of food materials in the terahertz region. Infrared Phys. Technol. 2018, 92, 128–133. [Google Scholar] [CrossRef]
- Kondoh, M.; Ohshima, Y.; Tsubouchi, M. Ion effects on the structure of water studied by terahertz time-domain spectroscopy. Chem. Phys. Lett. 2014, 591, 317–322. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, W.; Qin, J.; Xie, L.; Ying, Y. Monitoring High-Absorption Aqueous Solution with Multiple Attenuated Total Reflection Terahertz Time-Domain Spectroscopy. In Proceedings of the 2018 ASABE Annual International Meeting, Detroit, MI, USA, 29 July–1 August 2018. [Google Scholar]
- Limei, G.; Honglei, Z.; Jing, Z.; Kun, Z. Applications and prospect of 3D printing for oil-gas resources evaluation. Phys. Eng. 2017, 27, 77–83. [Google Scholar]
- Cheon, H.; Yang, H.-J.; Son, J.-H. Toward Clinical Cancer Imaging Using Terahertz Spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–9. [Google Scholar] [CrossRef]
- Mikerov, M.; Ornik, J.; Koch, M. Removing Water Vapor Lines from THz TDS Data Using Neural Networks. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 397–403. [Google Scholar] [CrossRef]
- Ji, J.; Jiang, J.; Chen, J.; Du, F.; Huang, P. Scattering reduction of perfectly electric conductive cylinder by coating plasma and metamaterial. Optik 2018, 161, 98–105. [Google Scholar] [CrossRef]
- Malevich, V.L.; Sinitsyn, G.V.; Sochilin, G.B.; Rosanov, N.N. Manifestations of Radiation Scattering in the Method of Pulsed Terahertz Spectroscopy. Opt. Spectrosc. 2018, 124, 889–894. [Google Scholar] [CrossRef]
- Marczewski, J.; Coquillat, D.; Knap, W.; Kolacinski, C.; Kopyt, P.; Kucharski, K.; Lusakowski, J.; Obrebski, D.; Tomaszewski, D.; Yavorskiy, D.; et al. THz detectors based on Si-CMOS technology field effect transistors–advantages, limitations and perspectives for THz imaging and spectroscopy. Opto-Electron. Rev. 2018, 26, 261–269. [Google Scholar] [CrossRef]
- Yeo, W.G.; Nahar, N.K. Characterization of a THz CW spectrometer pumped at 1550 nm. Infrared Phys. Technol. 2015, 71, 70–76. [Google Scholar] [CrossRef]
- Shin, H.J.; Lim, M.-C.; Kim, S.-H.; Park, K.; Choi, S.-W.; Ok, G. Thermally controllable filter at terahertz region. Infrared Phys. Technol. 2018, 88, 139–143. [Google Scholar] [CrossRef]
- Won, S.; Jung, H.-J.; Kim, D.; Lee, S.-H.; Kim, J.-H. Graphene-based crack lithography for high-throughput fabrication of terahertz metamaterials. Carbon 2019, 158, 505–512. [Google Scholar] [CrossRef]
- Shen, Y.C.; Yang, X.Y.; Zhang, Z.J. Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications. Chin. Phys. B 2020, 29, 078705. [Google Scholar] [CrossRef]
- Ok, G.; Shin, H.J.; Lim, M.-C.; Choi, S.-W. Large-scan-area sub-terahertz imaging system for nondestructive food quality inspection. Food Control 2019, 96, 383–389. [Google Scholar] [CrossRef]
- Mou, F.A.; Rahman, M.M.; Islam, M.R.; Bhuiyan, M.I.H. Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection. Sens. Bio-Sens. Res. 2020, 29, 100346. [Google Scholar] [CrossRef]
- Suzuki, D.; Kawano, Y. Flexible terahertz imaging systems with single-walled carbon nanotube films. Carbon 2020, 162, 13–24. [Google Scholar] [CrossRef]
- Yan, X.; Yang, M.; Zhang, Z.; Liang, L.; Wei, D.; Wang, M.; Zhang, M.; Wang, T.; Liu, L.; Xie, J.; et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens. Bioelectron. 2018, 126, 485–492. [Google Scholar] [CrossRef]
- Khalatpour, A.; Paulsen, A.K.; Deimert, C.; Wasilewski, Z.R.; Hu, Q. High-power portable terahertz laser systems. Nat. Photonics 2021, 15, 16–20. [Google Scholar] [CrossRef]
- Lei, T.; Tobin, B.; Liu, Z.H.; Yang, S.Y.; Sun, D.W. A terahertz time-domain super-resolution imaging method using a local-pixel graph neural network for biological products. Anal. Chim. Acta. 2021, 1181, 338898. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, F.; Wang, J.K. Terahertz image super-resolution based on a complex convolutional neural network. Opt. Lett. 2021, 46, 3123–3126. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.J.; Zhu, J.; Xu, M.Q.; Wu, X.; Peng, Y. An Approach of Spectra Standardization and Qualitative Identification for Biomedical Materials Based on Terahertz Spectroscopy. Sci. Program. 2020, 2020, 8841565. [Google Scholar] [CrossRef]
Source Type | Imaging Technology | Time Domain | Frequency Domain | Spectral Resolution | System Complexity | Imaging Speed |
---|---|---|---|---|---|---|
Pulse THz | Time-domain imaging | Yes | Yes | low | high | slow |
Real-time imaging | Yes | Yes | low | high | fast | |
Near field imaging | Yes | Yes | low | high | slow | |
Continuous THz | Coherent detection | Yes | Yes | high | low | fast |
Incoherent detection | No | No | high | low | fast |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, H.; Lv, M.; Lu, X.; Jiang, Y.; Wu, G.; Li, G.; Li, L.; Li, Z.; Zhang, Y. Applications of THz Spectral Imaging in the Detection of Agricultural Products. Photonics 2021, 8, 518. https://doi.org/10.3390/photonics8110518
Ge H, Lv M, Lu X, Jiang Y, Wu G, Li G, Li L, Li Z, Zhang Y. Applications of THz Spectral Imaging in the Detection of Agricultural Products. Photonics. 2021; 8(11):518. https://doi.org/10.3390/photonics8110518
Chicago/Turabian StyleGe, Hongyi, Ming Lv, Xuejing Lu, Yuying Jiang, Guofang Wu, Guangming Li, Li Li, Zhi Li, and Yuan Zhang. 2021. "Applications of THz Spectral Imaging in the Detection of Agricultural Products" Photonics 8, no. 11: 518. https://doi.org/10.3390/photonics8110518
APA StyleGe, H., Lv, M., Lu, X., Jiang, Y., Wu, G., Li, G., Li, L., Li, Z., & Zhang, Y. (2021). Applications of THz Spectral Imaging in the Detection of Agricultural Products. Photonics, 8(11), 518. https://doi.org/10.3390/photonics8110518