Role of Pascalization in Milk Processing and Preservation: A Potential Alternative towards Sustainable Food Processing
Abstract
:1. Introduction
2. Review of Literature
2.1. High-Pressure Processing (HPP)
2.2. Pulsed Electric Field (PEF) Processing
2.3. Ultrasound (US)
2.4. Ultraviolet (UV)
2.5. Cold Plasma Technique
2.6. Membrane Filtration
2.7. Micro Fluidization
2.8. Infrared Spectroscopy
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coutinho, N.M. Cold plasma processing of milk and dairy products. Trends Food Sci. Technol. 2018, 74, 56–68. [Google Scholar] [CrossRef]
- Hess, J.M.; Jonnalagadda, S.S.; Slavin, J.L. Dairy foods: Current evidence of their effects on bone, cardiometabolic, cognitive, and digestive health. Compr. Rev. Food Sci. Food Saf. 2016, 15, 251–268. [Google Scholar] [CrossRef] [PubMed]
- Amaral, G.; Silva, E.K.; Cavalcanti, R.N.; Cappato, L.P.; Guimaraes, J.T.; Alvarenga, V.O.; Esmerino, E.A.; Portela, J.B.; Ana, A.S.S.; Freitas, M.Q.; et al. Dairy processing using supercritical carbon dioxide technology: Theoretical fundamentals, quality and safety aspects. Trends Food Sci. Technol. 2017, 64, 94–101. [Google Scholar] [CrossRef]
- Barba, F.J.; Esteve, M.J.; Frígola, A. High pressure treatment effect on physicochemical and nutritional properties of fluid foods during storage: A review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 307–322. [Google Scholar] [CrossRef]
- Roobab, U.; Aadil, R.M.; Madni, G.M.; Bekhit, A.E. The impact of nonthermal technologies on the microbiological quality of juices: A review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 437–457. [Google Scholar] [CrossRef] [PubMed]
- Aadil, R.M.; Zeng, X.A.; Zhang, Z.H.; Wang, M.S.; Han, Z.; Jing, H.; Jabbar, S. Thermosonication: A potential technique that influences the quality of grapefruit juice. Int. J. Food Sci. Technol. 2015, 50, 1275–1282. [Google Scholar] [CrossRef]
- Aadil, R.M.; Zeng, X.A.; Wang, M.S.; Liu, Z.W.; Han, Z.; Zhang, Z.H.; Hong, J.; Jabbar, S. A potential of ultrasound on minerals, micro-organisms, phenolic compounds and colouring pigments of grapefruit juice. Int. J. Food Sci. Technol. 2015, 50, 1144–1150. [Google Scholar] [CrossRef]
- Mir, S.A.; Shah, M.A.; Mir, M.M. Understanding the role of plasma technology in food industry. Food Bioproc. Technol. 2016, 9, 734–750. [Google Scholar] [CrossRef]
- Ahmad, T.; Aadil, R.M.; Ahmed, H.; ur Rahman, U.; Soares, B.C.; Souza, S.L.; Pimentel, T.C.; Scudino, H.; Guimarães, J.T.; Esmerino, E.A.; et al. Treatment and utilization of dairy industrial waste: A review. Trends Food Sci. Technol. 2019, 88, 361–372. [Google Scholar] [CrossRef]
- Mosqueda-Melgar, J.; Elez-Martinez, P.; Raybaudi-Massilia, R.M.; Martin-Belloso, O. Effects of pulsed electric fields on pathogenic microorganisms of major concern in fluid foods: A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 747–759. [Google Scholar] [CrossRef]
- Gurol, C.; Ekinci, F.Y.; Aslan, N.; Korachi, M. Low temperature plasma for decontamination of E. coli in milk. Int. J. Food Microbiol. 2012, 157, 1–5. [Google Scholar] [CrossRef]
- Alegbeleye, O.O.; Guimarães, J.T.; Cruz, A.G.; Sant’Ana, A.S. Hazards of a ‘healthy’trend? An appraisal of the risks of raw milk consumption and the potential of novel treatment technologies to serve as alternatives to pasteurization. Trends Food Sci. Technol. 2018, 82, 148–166. [Google Scholar] [CrossRef]
- Li, X.; Farid, M. A review on recent development in non-conventional food sterilization technologies. J. Food Eng. 2016, 182, 33–45. [Google Scholar] [CrossRef]
- Claeys, W.L.; Cardoen, S.; Daube, G.; De Block, J.; Dewettinck, K.; Dierick, K.; De Zutter, L.; Huyghebaert, A.; Imberechts, H.; Thiange, P.; et al. Raw or heated cow milk consumption: Review of risks and benefits. Food Control 2013, 31, 251–262. [Google Scholar] [CrossRef]
- Amaral, G.V.; Silva, E.K.; Costa, A.L.; Alvarenga, V.O.; Cavalcanti, R.N.; Esmerino, E.A.; Guimarães, J.T.; Freitas, M.Q.; Sant’Ana, A.S.; Cunha, R.L.; et al. Whey-grape juice drink processed by supercritical carbon dioxide technology: Physical properties and sensory acceptance. LWT 2018, 92, 80–86. [Google Scholar] [CrossRef]
- Guimarães, J.T.; Silva, E.K.; Alvarenga, V.O.; Costa, A.L.; Cunha, R.L.; Sant’Ana, A.S.; Freitas, M.Q.; Meireles, M.A.; Cruz, A.G. Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrason. Sonochem. 2018, 44, 251–260. [Google Scholar] [CrossRef]
- Guimarães, J.T.; Silva, E.K.; Ranadheera, C.S.; Moraes, J.; Raices, R.S.; Silva, M.C.; Ferreira, M.S.; Freitas, M.Q.; Meireles, M.A.; Cruz, A.G. Effect of high-intensity ultrasound on the nutritional profile and volatile compounds of a prebiotic soursop whey beverage. Ultrason. Sonochem. 2019, 55, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, N.M.; Silveira, M.R.; Fernandes, L.M.; Moraes, J.; Pimentel, T.C.; Freitas, M.Q.; Silva, M.C.; Raices, R.S.; Ranadheera, C.S.; Borges, F.O.; et al. Processing chocolate milk drink by low-pressure cold plasma technology. Food Chem. 2019, 278, 276–283. [Google Scholar] [CrossRef]
- Coutinho, N.M.; Silveira, M.R.; Pimentel, T.C.; Freitas, M.Q.; Moraes, J.; Fernandes, L.M.; Silva, M.C.; Raices, R.S.; Ranadheera, C.S.; Borges, F.O.; et al. Chocolate milk drink processed by cold plasma technology: Physical characteristics, thermal behavior and microstructure. LWT 2019, 102, 324–329. [Google Scholar] [CrossRef]
- Zia, S.; Khan, M.R.; Zeng, X.A.; Shabbir, M.A.; Aadil, R.M. Combined effect of microwave and ultrasonication treatments on the quality and stability of sugarcane juice during cold storage. Int. J. Food Sci. Technol. 2019, 54, 2563–2569. [Google Scholar] [CrossRef]
- Aadil, R.M.; Khalil, A.A.; Rehman, A.; Khalid, A.; Inam-ur-Raheem, M.; Karim, A.; Gill, A.A.; Abid, M.; Afraz, M.T. Assessing the impact of ultra-sonication and thermo-ultrasound on antioxidant indices and polyphenolic profile of apple-grape juice blend. J. Food Process. Preserv. 2020, 44, e14406. [Google Scholar] [CrossRef]
- Aadil, R.M.; Zeng, X.A.; Han, Z.; Sahar, A.; Khalil, A.A.; Rahman, U.U.; Khan, M.; Mehmood, T. Combined effects of pulsed electric field and ultrasound on bioactive compounds and microbial quality of grapefruit juice. J. Food Process. Preserv. 2018, 42, e13507. [Google Scholar] [CrossRef]
- Balasubramaniam, V.; Farkas, D. High-pressure food processing. Food Sci. Technol. Int. 2008, 14, 413–418. [Google Scholar] [CrossRef]
- Huang, H.W.; Wu, S.J.; Lu, J.K.; Shyu, Y.T.; Wang, C.Y. Current status and future trends of high-pressure processing in food industry. Food Cont. 2017, 72, 1–8. [Google Scholar] [CrossRef]
- Zhang, H.; Mittal, G.S. Effects of high-pressure processing (HPP) on bacterial spores: An overview. Food Rev. Int. 2008, 24, 330–351. [Google Scholar] [CrossRef]
- Bull, M.K.; Hayman, M.M.; Stewart, C.M.; Szabo, E.A.; Knabel, S.J. Effect of prior growth temperature, type of enrichment medium, and temperature and time of storage on recovery of Listeria monocytogenes following high pressure processing of milk. Int. J. Food Microbiol. 2005, 101, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Mandal, R.; Kant, R. High-pressure processing and its applications in the dairy industry. Food Sci. Technol. 2017, 1, 33–45. [Google Scholar]
- Huppertz, T. High pressure processing of milk. In Improving the Safety and Quality of Milk; Elsevier: Amsterdam, The Netherlands, 2010; pp. 373–399. [Google Scholar]
- Pinho, C.R.; Franchi, M.A.; Tribst, A.A.; Cristianinia, M. Effect of high-pressure homogenization process on Bacillus stearothermophilus and Clostridium sporogenes spores in skim milk. Procedia Food Sci. 2011, 1, 869–873. [Google Scholar] [CrossRef] [Green Version]
- Amador Espejo, G.G.; Hernández-Herrero, M.M.; Juan, B.; Trujillo, A.J. Inactivation of Bacillus spores inoculated in milk by ultra-high-pressure homogenization. Food Microbiol. 2014, 44, 204–210. [Google Scholar] [CrossRef]
- Gervilla, R.; Felipe, X.; Ferragut, V.; Guamis, B. Effect of high hydrostatic pressure on Escherichia coli and Pseudomonas fluorescens strains in bovine milk. J. Dairy Sci. 1997, 80, 2297–2303. [Google Scholar] [CrossRef]
- Erkmen, O. Mathematical modeling of Salmonella typhimurium inactivation under high hydrostatic pressure at different temperatures. Food Bioprod. Process. 2009, 87, 68–73. [Google Scholar] [CrossRef]
- Shao, Y.; Ramaswamy, H.S. Clostridium sporogenes-ATCC 7955 spore destruction kinetics in milk under high pressure and elevated temperature treatment conditions. Food Bioproc. Technol. 2011, 4, 458–468. [Google Scholar] [CrossRef]
- Picart, L.; Thiebaud, M.; René, M.; Pierre Guiraud, J.; Cheftel, J.C.; Dumay, E. Effects of high pressure homogenisation of raw bovine milk on alkaline phosphatase and microbial inactivation: A comparison with continuous short-time thermal treatments. J. Dairy Res. 2006, 73, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Iucci, L.; Patrignani, F.; Vallicelli, M.; Guerzoni, M.E.; Lanciotti, R. Effects of high pressure homogenization on the activity of lysozyme and lactoferrin against Listeria monocytogenes. Food Control 2007, 18, 558–565. [Google Scholar] [CrossRef]
- Briñez, W.J.; Roig-Sagués, A.X.; Herrero, M.M.H.; López, B.G. Inactivation of Staphylococcus ssp. Strains in whole milk and orange juice using ultra high-pressure homogenization at inlet temperatures of 6 and 20°C. Food Control 2007, 18, 1282–1288. [Google Scholar] [CrossRef]
- Capellas, M.; Mor-Mur, M.; Sendra, E.; Guamis, B. Effect of high-pressure processing on physico-chemical characteristics of fresh goats’ milk cheese (Mató). Int. Dairy J. 2001, 11, 165–173. [Google Scholar] [CrossRef]
- Stratakos, A.C.; Inguglia, E.S.; Linton, M.; Tollerton, J.; Murphy, L.; Corcionivoschi, N.; Koidis, A.; Tiwari, B.K. Effect of high pressure processing on the safety, shelf life and quality of raw milk. Innov. Food Sci. Emerg. Technol. 2019, 52, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Olsen, N.V.; Grunert, K.G.; Sonne, A.M. Consumer acceptance of high-pressure processing and pulsed-electric field: A review. Trends Food Sci. Technol. 2010, 21, 464–472. [Google Scholar] [CrossRef]
- K Kumar, Y.; Patel, K.K.; Kumar, V. Pulsed electric field processing in food technology. Int. J. Eng. Stud. Technol. Approach 2015, 1, 6–17. [Google Scholar]
- Barbosa-Cánovas, G.V.; Zhang, Q.H. Pulsed Electric Fields in Food Processing: Fundamental Aspects and Applications; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Bendicho, S.l.; Barbosa-Cánovas, G.V.; Martín, O. Milk processing by high intensity pulsed electric fields. Trends Food Sci. Technol. 2002, 13, 195–204. [Google Scholar] [CrossRef]
- Munekata, P.E.; Domínguez, R.; Budaraju, S.; Roselló-Soto, E.; Barba, F.J.; Mallikarjunan, K.; Roohinejad, S.; Lorenzo, J.M. Effect of innovative food processing technologies on the physicochemical and nutritional properties and quality of non-dairy plant-based beverages. Foods 2020, 9, 288. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Oey, I.; Everett, D.W. Effect of pulsed electric field processing on the functional properties of bovine milk. Trends Food Sci. Technol. 2014, 35, 87–101. [Google Scholar] [CrossRef]
- Sobrino-López, A.; Martín-Belloso, O. Potential of high-intensity pulsed electric field technology for milk processing. Food Eng. Rev. 2010, 2, 17–27. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Munir, A.; Buntat, Z.; Ahmad, M.H.; Jusoh, Y.M.; Bekhit, A.E.; Roobab, U.; Manzoor, M.F.; Aadil, R.M. Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends Food Sci. Technol. 2020, 104, 1–13. [Google Scholar] [CrossRef]
- Soltanzadeh, M.; Peighambardoust, S.H.; Gullon, P.; Hesari, J.; Gullón, B.; Alirezalu, K.; Lorenzo, J. Quality aspects and safety of pulsed electric field (PEF) processing on dairy products: A comprehensive review. Food Rev. Int. 2020, 2020, 1–22. [Google Scholar] [CrossRef]
- Sepulveda, D.R.; Góngora-Nieto, M.M.; Guerrero, J.A.; Barbosa-Cánovas, G.V. Shelf life of whole milk processed by pulsed electric fields in combination with PEF-generated heat. LWT 2009, 42, 735–739. [Google Scholar] [CrossRef]
- Qin, B.-L.; Barbosa-Canovas, G.V.; Swanson, B.G.; Pedrow, P.D.; Olsen, R.G. Inactivating microorganisms using a pulsed electric field continuous treatment system. IEEE Trans. Ind. Appl. 1998, 34, 43–50. [Google Scholar]
- Fernández-Molina, J.J. Inactivation of listeria innocua and pseudomonas fluorescens in skim milk treated with pulsed electric fields. In Pulsed Electric Fields in Food Processing. Fundamental Aspects and Applications; Barbosa-Ca’novas, G.V., Zhang, Q.H., Eds.; Technomic Publishing Company Inc: Lancaster, PA, USA, 2001; pp. 149–166. [Google Scholar]
- Sobrino-López, A.; Martin-Belloso, O. Enhancing inactivation of Staphylococcus aureus in skim milk by combining high-intensity pulsed electric fields and nisin. J. Food Prot. 2006, 69, 345–353. [Google Scholar] [CrossRef]
- Miranda, M.L.C. Inactivation of Listeria Innocua by Pulsed Electric Fields and Nisin; Washington State University: Pullman, WA, USA, 1998. [Google Scholar]
- Guerrero-Beltrán, J.Á.; Sepulveda, D.R.; Góngora-Nieto, M.M.; Swanson, B.; Barbosa-Cánovas, G. Milk thermization by pulsed electric fields (PEF) and electrically induced heat. J. Food Eng. 2010, 100, 56–60. [Google Scholar] [CrossRef]
- Sobrino-López, A.; Martín-Belloso, O. Enhancing the lethal effect of high intensity pulsed electric field in milk by antimicrobial compounds as combined hurdles. J. Dairy Sci. 2008, 91, 1759–1768. [Google Scholar] [CrossRef] [Green Version]
- Ercan, S.S.; Soysal, C. Use of Ultrasound in Food Preservation. Nat. Sci. 2013, 5, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Ertugay, M.F.; Şengül, M.; Şengül, M. Effect of ultrasound treatment on milk homogenisation and particle size distribution of fat. Turk. J. Vet. Anim. 2004, 28, 303–308. [Google Scholar]
- Alexandra, P. Bactericidal Effect of Ultrasound on the Microbiota of Raw Milk Cream. Adv. J. Food Sci. Technol. 2018, 15, 179–183. [Google Scholar] [CrossRef]
- Juraga, E.; Sobota Šalamon, B.; Herceg, Z.; Režek Jambrak, A. Application of high intensity ultrasound treatment on Enterobacteriae count in milk. Mljekarstvo 2011, 61, 125–134. [Google Scholar]
- Cregenzán-Alberti, O.; Halpin, R.M.; Whyte, P.; Lyng, J.; Noci, F. Suitability of ccRSM as a tool to predict inactivation and its kinetics for Escherichia coli, Staphylococcus aureus and Pseudomonas fluorescens in homogenized milk treated by manothermosonication (MTS). Food Control 2014, 39, 41–48. [Google Scholar] [CrossRef]
- Herceg, Z.; Režek Jambrak, A.; Lelas, V.; Mededovic Thagard, S. The effect of high intensity ultrasound treatment on the amount of Staphylococcus aureus and Escherichia coli in milk. Food Technol. Biotechnol. 2012, 50, 46–52. [Google Scholar]
- Cameron, M.; McMaster, L.D.; Britz, T.J. Impact of ultrasound on dairy spoilage microbes and milk components. Dairy Sci. Technol. 2009, 89, 83–98. [Google Scholar] [CrossRef]
- Earnshaw, R.; Appleyard, J.; Hurst, R. Understanding physical inactivation processes: Combined preservation opportunities using heat, ultrasound and pressure. Int. J. Food Microbiol. 1995, 28, 197–219. [Google Scholar] [CrossRef]
- Wrigley, D.M.; Llorca, N.G. Decrease of Salmonella typhimurium in skim milk and egg by heat and ultrasonic wave treatment. J. Food Prot. 1992, 55, 678–680. [Google Scholar] [CrossRef] [PubMed]
- Zenker, M.; Heinz, V.; Knorr, D. Application of ultrasound assisted thermal processing for preservation and quality retention of liquid foods. J. Food Prot. 2003, 66, 1642–1649. [Google Scholar] [CrossRef]
- Potoroko, I.; Kalinina, I.; Botvinnikova, V.; Krasulya, O.; Fatkullin, R.; Bagale, U.; Sonawane, S.H. Ultrasound effects based on simulation of milk processing properties. Ultrason. Sonochem. 2018, 48, 463–472. [Google Scholar] [CrossRef]
- Demirdöven, A.; Baysal, T. The use of ultrasound and combined technologies in food preservation. Food Rev. Int. 2008, 25, 1–11. [Google Scholar] [CrossRef]
- Guneser, O.; Yuceer, Y.K. Effect of ultraviolet light on water-and fat-soluble vitamins in cow and goat milk. J. Dairy Sci. 2012, 95, 6230–6241. [Google Scholar] [CrossRef] [Green Version]
- Falguera, V.; Pagán, J.; Ibarz, A. Effect of UV irradiation on enzymatic activities and physicochemical properties of apple juices from different varieties. LWT 2011, 44, 115–119. [Google Scholar] [CrossRef]
- Choudhary, R.; Bandla, S. Ultraviolet pasteurization for food industry. Int. J. Food Sci. Nutr. Eng. 2012, 2, 12–15. [Google Scholar] [CrossRef]
- Barba, F.J.; Koubaa, M.; do Prado-Silva, L.; Orlien, V.; de Souza Sant’Ana, A. Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends Food Sci. Technol. 2017, 66, 20–35. [Google Scholar] [CrossRef]
- Datta, N.; Harimurugan, P.; Palombo, E.A. Ultraviolet and pulsed light technologies in dairy processing. Emerg. Dairy Process. Technol. 2015, 2015, 181–204. [Google Scholar] [CrossRef]
- Jin, Y.; Hengl, N.; Baup, P.; Pignon, F.; Gondrexon, N.; Sztucki, M.; Gesan-Guiziou, G.; Magnin, A.; Abyan, M.; Karrouch, M.; et al. Effects of ultrasound on cross-flow ultrafiltration of skim milk: Characterization from macro-scale to nano-scale. J. Membr. Sci. 2014, 470, 205–218. [Google Scholar] [CrossRef]
- Krishnamurthy, K.; Demirci, A.; Irudayaraj, J.M. Inactivation of Staphylococcus aureus in milk using flow-through pulsed UV-light treatment system. J. Food Sci. 2007, 72, 233–239. [Google Scholar] [CrossRef]
- Matak, K.E.; Sumner, S.S.; Duncan, S.E.; Hovingh, E.; Worobo, R.W.; Hackney, C.R.; Pierson, M.D. Effects of ultraviolet irradiation on chemical and sensory properties of goat milk. J. Dairy Sci. 2007, 90, 3178–3186. [Google Scholar] [CrossRef] [Green Version]
- Simmons, M.J.; Alberini, F.; Tsoligkas, A.N.; Gargiuli, J.; Parker, D.J.; Fryer, P.J.; Robinson, S. Development of a hydrodynamic model for the UV-C treatment of turbid food fluids in a novel ‘SurePure turbulator™’swirl-tube reactor. Innov. Food Sci. Emerg. Technol. 2012, 14, 122–134. [Google Scholar] [CrossRef]
- Reinemann, D.J.; Gouws, P.; Cilliers, T.; Houck, K.; Bishop, J.R. New methods for UV treatment of milk for improved food safety and product quality. in 2006 ASAE Annual Meeting. Am. Societ. Agricultur. Biol. Eng. 2006. [Google Scholar] [CrossRef]
- Bandla, S.; Choudhary, R.; Watson, D.G.; Haddock, J. UV-C treatment of soymilk in coiled tube UV reactors for inactivation of Escherichia coli W1485 and Bacillus cereus endospores. LWT 2012, 46, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.M.P.; Lee, Y.K.; Zhou, W. Effect of high intensity ultrasound on carbohydrate metabolism of bifidobacteria in milk fermentation. Food Chem. 2012, 130, 866–874. [Google Scholar] [CrossRef]
- Körzendörfer, A.; Nöbel, S.; Hinrichs, J. Particle formation induced by sonication during yogurt fermentation–Impact of exopolysaccharide-producing starter cultures on physical properties. Int. Food Res. J. 2017, 97, 170–177. [Google Scholar] [CrossRef]
- Shershenkov, B.; Suchkova, E. Upgrading the technology of functional dairy products by means of fermentation process ultrasonic intensification. Agron. Res. 2015, 13, 1074–1085. [Google Scholar]
- Orlowska, M.; Koutchma, T.; Grapperhaus, M.; Gallagher, J.; Schaefer, R.; Defelice, C. Continuous and pulsed ultraviolet light for nonthermal treatment of liquid foods. Part 1: Effects on quality of fructose solution, apple juice, and milk. Food Bioproc. Technol. 2013, 6, 1580–1592. [Google Scholar] [CrossRef]
- Fernández, A.; Thompson, A. The inactivation of Salmonella by cold atmospheric plasma treatment. Food Res. Int. 2012, 5, 678–684. [Google Scholar] [CrossRef]
- Misra, N.N.; Koubaa, M.; Roohinejad, S.; Juliano, P.; Alpas, H.; Inácio, R.S.; Saraiva, J.A.; Barba, F.J. Landmarks in the historical development of twenty first century food processing technologies. Food Res. Int. 2017, 97, 318–339. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Shi, H.; Keener, K.M. A review of novel physical and chemical decontamination technologies for aflatoxin in Food. Trends Food Sci. Technol. 2018, 71, 73–83. [Google Scholar]
- Phan, K.T.; Phan, H.T.; Brennan, C.S.; Phimolsiripol, Y. Nonthermal plasma for pesticide and microbial elimination on fruits and vegetables: An overview. Int. J. Food Sci. Technol. 2017, 52, 2127–2137. [Google Scholar] [CrossRef]
- Thirumdas, R.; Sarangapani, C.; Annapure, U.S. Cold plasma: A novel non-thermal technology for food processing. Food Biophys. 2015, 10, 1–11. [Google Scholar] [CrossRef]
- Misra, N.N.; Martynenko, A.; Chemat, F.; Paniwnyk, L.; Barba, F.J.; Jambrak, A.R. Thermodynamics, transport phenomena, and electrochemistry of external field-assisted nonthermal food technologies. Crit. Rev. Food Sci. Nutr. 2018, 58, 1832–1863. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.; Liu, D.; Xiang, Q.; Ahn, J.; Chen, S.; Ye, X.; Ding, T. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Cont. 2017, 75, 83–91. [Google Scholar]
- Segat, A.; Misra, N.N.; Cullen, P.J.; Innocente, N. Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food Bioprod. Process. 2016, 98, 181–188. [Google Scholar] [CrossRef]
- Ehlbeck, J.; Schnabel, U.; Polak, M.; Winter, J.; Von Woedtke, T.; Brandenburg, R.; Von dem Hagen, T.; Weltmann, K.D. Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. 2010, 44, 013002. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Yong, H.I.; Park, S.; Kim, K.; Choe, W.; Jo, C. Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control 2015, 47, 451–456. [Google Scholar] [CrossRef]
- Ruan, R.; Deng, S.; Cheng, Y. Concentrated high intensity electric field (CHIEF) pasteurization of milk. Midwest Dairy Foods. Res. Cent. 2010, 2010, 183–188. [Google Scholar]
- Korachi, M.; Gurol, C.; Aslan, N. Atmospheric plasma discharge sterilization effects on whole cell fatty acid profiles of Escherichia coli and Staphylococcus aureus. J. Electrost. 2010, 68, 508–512. [Google Scholar] [CrossRef]
- Korachi, M.; Aslan, N. The effect of atmospheric pressure plasma corona discharge on pH, lipid content and DNA of bacterial cells. Plasma. Sci. Technol. 2011, 13, 99. [Google Scholar] [CrossRef]
- Dave, A.; Walkling-Ribeiro, M.; Rodríguez-González, O.; Griffiths, M.W.; Corredig, M. Effect of PEF and UV and their combination on selected microorganisms and physicochemical properties in whey. J. Dairy Sci. 2012, 95, 168. [Google Scholar]
- Sarangapani, C.; Devi, Y.; Thirundas, R.; Annapure, U.S.; Deshmukh, R.R. Effect of low-pressure plasma on physico-chemical properties of parboiled rice. LWT 2015, 63, 452–460. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, N.; Ranjan, R.; Kumar, S.; Bhat, Z.F.; Jeong, D.K. Perspective of membrane technology in dairy industry: A review. Asian Australas. J. Anim. Sci. 2013, 26, 1347. [Google Scholar] [CrossRef] [Green Version]
- Leeb, E.; Holder, A.; Letzel, T.; Cheison, S.C.; Kulozik, U.; Hinrichs, J. Fractionation of dairy based functional peptides using ion-exchange membrane adsorption chromatography and cross-flow electro membrane filtration. Int. Dairy J. 2014, 38, 116–123. [Google Scholar] [CrossRef]
- Pafylias, I.; Cheryan, M.; Mehaia, M.A.; Saglam, N. Microfiltration of milk with ceramic membranes. Food Res. Int. 1996, 29, 141–146. [Google Scholar] [CrossRef]
- Rodríguez-González, O.; Walkling-Ribeiro, M.; Jayaram, S.; Griffiths, M.W. Factors affecting the inactivation of the natural microbiota of milk processed by pulsed electric fields and cross-flow microfiltration. J. Dairy Res. 2011, 78, 270. [Google Scholar] [CrossRef] [PubMed]
- Maubois, J. Membrane microfiltration: A tool for a new approach in dairy technology. Aust. J. Dairy Technol. 2002, 57, 92. [Google Scholar]
- Gosch, T.; Apprich, S.; Kneifel, W.; Novalin, S.A. A combination of microfiltration and high pressure treatment for the elimination of bacteria in bovine colostrum. Int. Dairy J. 2014, 34, 41–46. [Google Scholar] [CrossRef]
- Daufin, G.; Escudier, J.P.; Carrère, H.; Bérot, S.; Fillaudeau, L.; Decloux, M. Recent and emerging applications of membrane processes in the food and dairy industry. Food Bioprod. Process. 2001, 79, 89–102. [Google Scholar] [CrossRef]
- Caplan, Z.; Barbano, D. Shelf life of pasteurized microfiltered milk containing 2% fat. J. Dairy Sci. 2013, 96, 8035–8046. [Google Scholar] [CrossRef] [PubMed]
- Gesan-Guiziou, G. Removal of bacteria, spores and somatic cells from milk by centrifugation and microfiltration techniques. In Improving the Safety and Quality of Milk; Elsevier: Amsterdam, The Netherlands, 2010; pp. 349–372. [Google Scholar]
- Elwell, M.; Barbano, D. Use of microfiltration to improve fluid milk quality. J. Dairy Sci. 2006, 89, 20–30. [Google Scholar] [CrossRef]
- Trouvé, E.; Maubois, J.L.; Piot, M.; Madec, M.N.; Fauquant, J.; Rouault, A.; Tabard, J.; Brinkman, G. Retention of various microbial species during milk purification by cross-flow microfiltration. Lait 1991, 71, 1–13. [Google Scholar] [CrossRef]
- Saboyainsta, L.V.; Maubois, J.L. Current developments of microfiltration technology in the dairy industry. Le Lait 2000, 80, 541–553. [Google Scholar] [CrossRef] [Green Version]
- Brans, G.B.; Schroën, C.G.; Van der Sman, R.G.; Boom, R.M. Membrane fractionation of milk: State of the art and challenges. J. Membr. Sci. 2004, 243, 263–272. [Google Scholar] [CrossRef]
- Paquin, P. Technological properties of high pressure homogenizers: The effect of fat globules, milk proteins, and polysaccharides. Int. Dairy J. 1999, 9, 329–335. [Google Scholar] [CrossRef]
- Dalgleish, D.G.; Tosh, S.M.; West, S. Beyond homogenization: The formation of very small emulsion droplets during the processing of milk by a microfluidizer. Ned. Melk. En. Zuiveltijdschr. 1996, 50, 135–148. [Google Scholar]
- Ciron, C.I.; Gee, V.L.; Kelly, A.L.; Auty, M.A. Effect of microfluidization of heat-treated milk on rheology and sensory properties of reduced fat yoghurt. Food Hydrocoll. 2011, 25, 1470–1476. [Google Scholar] [CrossRef]
- Lemay, A.; Paquin, P.; Lacroix, C. Influence of microfluidization of milk on Cheddar cheese composition, color, texture, and yield. J. Dairy Sci. 1994, 77, 2870–2879. [Google Scholar] [CrossRef]
- Van Hekken, D.L.; Tunick, M.H.; Malin, E.L.; Holsinger, V.H. Rheology and melt characterization of low-fat and full fat Mozzarella cheese made from microfluidized milk. LWT 2007, 40, 89–98. [Google Scholar] [CrossRef]
- Amador-Espejo, G.G.; Suàrez-Berencia, A.; Juan, B.; Bárcenas, M.E.; Trujillo, A.J. Effect of moderate inlet temperatures in ultra-high-pressure homogenization treatments on physicochemical and sensory characteristics of milk. J. Dairy Sci. 2014, 97, 659–671. [Google Scholar] [CrossRef] [PubMed]
- Juan, B.; Quevedo, J.; Guamis, B.; Ferragut, V.; Trujillo, A. Sensorial characteristics of goat milk cheeses made from ultra-high-Pressure homogenization-treated milk. In Proceedings of the 11 International Congress on Engineering and Food, Athens, Greece, 22 May 2009. [Google Scholar]
- Serra, M.; Trujillo, A.J.; Guamis, B.; Ferragut, V. Flavour profiles and survival of starter cultures of yoghurt produced from high-pressure homogenized milk. Int. Dairy J. 2009, 19, 100–106. [Google Scholar] [CrossRef]
- Zamora, A.; Juan, B.; Trujillo, A.J. Compositional and biochemical changes during cold storage of starter-free fresh cheeses made from ultra-high-pressure homogenised milk. Food Chem. 2015, 176, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Pereda, J.; Jaramillo, D.P.; Quevedo, J.M.; Ferragut, V.; Guamis, B.; Trujillo, A.J. Characterization of volatile compounds in ultra-high-pressure homogenized milk. Int. Dairy J. 2008, 18, 826–834. [Google Scholar] [CrossRef]
- Amador-Espejo, G.G.; Gallardo-Chacón, J.J.; Juan, B.; Trujillo, A.J. Effect of ultra-high-pressure homogenization at moderate inlet temperatures on volatile profile of milk. J. Food Process. Eng. 2017, 40, e12548. [Google Scholar] [CrossRef]
- Bucci, A.J.; Van Hekken, D.L.; Tunick, M.H.; Renye, J.A.; Tomasula, P.M. The effects of microfluidization on the physical, microbial, chemical, and coagulation properties of milk. J. Dairy Sci. 2018, 101, 6990–7001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tunick, M.H.; Van Hekken, D.L.; Cooke, P.H.; Smith, P.W.; Malin, E.L. Effect of high pressure microfluidization on microstructure of mozzarella cheese. LWT 2000, 33, 538–544. [Google Scholar] [CrossRef]
- Olson, D.W.; White, C.H.; Watson, C.E. Properties of frozen dairy desserts processed by microfluidization of their mixes. J. Dairy Sci. 2003, 86, 1157–1162. [Google Scholar] [CrossRef]
- Iordache, M.; Jelen, P. High pressure microfluidization treatment of heat denatured whey proteins for improved functionality. Innov. Food Sci. Emerg. Technol. 2003, 4, 367–376. [Google Scholar] [CrossRef]
- Zhong, J.Z.; Liu, W.; Liu, C.M.; Wang, Q.H.; Li, T.; Tu, Z.C.; Luo, S.J.; Cai, X.F.; Xu, Y.J. Aggregation and conformational changes of bovine β-lactoglobulin subjected to dynamic high-pressure microfluidization in relation to antigenicity. J. Dairy Sci. 2012, 95, 4237–4245. [Google Scholar] [CrossRef]
- Kamal, M.; Karoui, R. Analytical methods coupled with chemometric tools for determining the authenticity and detecting the adulteration of dairy products?: A review. Trends Food Sci. Technol. 2015, 46, 27–48. [Google Scholar] [CrossRef]
- De Marchi, M.; Penasa, M.; Zidi, A.; Manuelian, C.L. Invited review: Use of infrared technologies for the assessment of dairy products-Applications and perspectives. J. Dairy Sci. 2018, 101, 10589–10604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Parra, H.A.; Pustjens, A.; Hettinga, K.; Mongondry, P.; van Ruth, S.M. Evaluation of portable near-infrared spectroscopy for organic milk authentication. Talanta 2018, 184, 128–135. [Google Scholar] [CrossRef]
- Brown, G. Quality Control using NIR/MIR Spectroscopy: A Rotten Apple Could Turn Your Product into a Lemon. IICA Tech Night Presentation, 9 December 2013. [Google Scholar]
- Luiz, L.C.; Bell, M.J.V.; Rocha, R.A.; Leal, N.L.; Anjos, V.C. Detection of Veterinary Antimicrobial Residues in Milk through Near-Infrared Absorption Spectroscopy. J. Spectrosc. 2018, 2018, 1–6. [Google Scholar] [CrossRef]
- Botelho, B.G.; Reis, N.; Oliveira, L.S.; Sena, M.M. Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA. Food Chem. 2015, 181, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Gondim, C.S.; Junqueira, R.G.; Souza, S.V.C.; Ruisánchez, I.; Callao, M.P. Detection of several common adulterants in raw milk by MID-infrared spectroscopy and one-class and multi-class multivariate strategies. Food Chem. 2017, 230, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Sturaro, A.; De Marchi, M.; Masi, A.; Cassandro, M. Quantification of whey proteins by reversed phase-HPLC and effectiveness of mid-infrared spectroscopy for their rapid prediction in sweet whey. J. Dairy Sci. 2016, 99, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Andrade, J.; Pereira, C.G.; de Almeida, J.C.; Viana, C.C.R.; de Oliveira Neves, L.N.; da Silva, P.H.; Bell, M.J.; dos Anjos, V.D. FTIR-ATR determination of protein content to evaluate whey protein concentrate adulteration. LWT 2019, 99, 166–172. [Google Scholar] [CrossRef]
- Ingle, P.D.; Christian, R.; Purohit, P.; Zarraga, V.; Handley, E.; Freel, K.; Abdo, S. Determination of protein content by NIR spectroscopy in protein powder mix products. J. AOAC Int. 2016, 99, 360–363. [Google Scholar] [CrossRef] [PubMed]
- O’Loughlin, I.B.; Kelly, P.; Murray, B.A.; FitzGerald, R.J.; Brodkorb, A. Concentrated whey protein ingredients: A Fourier transformed infrared spectroscopy investigation of thermally induced denaturation. Int. J. Dairy Technol. 2015, 68, 349–356. [Google Scholar] [CrossRef]
- Wang, T.; Tan, S.Y.; Mutilangi, W.; Aykas, D.P.; Rodriguez-Saona, L.E. Authentication of Whey Protein Powders by Portable Mid-Infrared Spectrometers Combined with Pattern Recognition Analysis. J. Food Sci. 2015, 80, 2111–2116. [Google Scholar] [CrossRef]
- Kucheryavskiy, S.; Lomborg, C.J. Monitoring of whey quality with NIR spectroscopy—A feasibility study. Food Chem. 2015, 176, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Sun, D.W.; Pu, H.; Wei, Q. Principles and applications of spectroscopic techniques for evaluating food protein conformational changes: A review. Trends Food Sci. Technol. 2017, 67, 207–219. [Google Scholar] [CrossRef]
Products | Conditions | Target Microorganism | Inactivation Effect | Ref. |
---|---|---|---|---|
Skim milk | Temperature: 84 °C; pressure: 300 MPa | Bacillus stearothermophilus ATCC 7953 | 0.67-log reduction | [29] |
Commercial sterile milk | Temperature: 75–85 °C; Pressure: 300 MPa | Bacillus spores | 5-log CFU/mL reduction | [30] |
Commercial sterile milk | Temperature: 50 °C; Pressure: 400 MPa | Escherichia coli | 1 min D value reduction | [31] |
Raw milk | Temperature: 25 °C; pressure: 300 MPa | Salmonella typhimurium | 9.21 min D value reduction | [32] |
Milk | Temperature: 90 °C; pressure: 700 MPa | Clostridium sporogenes | 13.6 min D value reduction | [33] |
Raw milk (15% milk) | Temperature: 24 °C; pressure: 300 MPa | Listeria innocua | 1.80-log reduction | [34] |
Raw milk (15% milk) | Temperature: 2–4 °C; pressure: 100 MPa | Listeria monocytogenes | 1.20-log reduction | [35] |
Raw milk (15% milk) | Temperature: 20 °C; pressure: 300 MPa | Staphylococcus aureus | 4.00-log reduction | [36] |
Products | Conditions | Target Microorganism | Inactivation Effect | Ref. |
---|---|---|---|---|
Milk undergone ultrafiltration | Pulses: 50 and 80; kV/cm: 60 and 70 | Escherichia coli | 6 and 9-log | [49] |
Skim milk (pasteurized) | 200 µs; kV/cm: 50 | Listeria innocua | 2.6–2.7-log | [50] |
Ultra-High Temperature milk | 8 µs; kV/cm: 35 | Staphylococcus aureus | 4.5-log | [51] |
Skim milk (raw) | 2 µs; kV/cm: 50 | Listeria innocua | 2.4-log | [52] |
Whole milk | 43.75 μs; kV/cm: 40 | Listeria innocua | 5.5-log | [53] |
Skim milk | 100 μs; kV/cm: 25 | Staphylococcus aureus | 3-log | [54] |
Products | Conditions | Target Microorganisms | Inactivation Effect | Ref. |
---|---|---|---|---|
Raw milk cream | 500 W, frequency of 37 kHz; Time: 2-, 5- and 10-min temperature of 30 and 40 ± 2 °C stored in the refrigerator for 10 days | Mesophyll’s aerobes, total coliforms, molds, and yeasts | The treatment at 37 kHz for 10 min at a temperature of 40 °C decreased the initial microbial load by 79% | [57] |
Raw milk | Temperature: 20, 40 and 60 °C Amplitude 120, 90 and 60 µm Time: 6, 9 and 12 min | Enterobacteriae | For specific ultrasound parameters, the lowest Enterobacteriae count (1.06151 log CFU mL−1) was as follows: amplitude of 120 m, treatment time of 12 min, and temperature of 60 °C | [58] |
Homogenized milk | Temperature: 20–52 °C Intensity: 0–120 W/cm2 Time; 40–240 s Constant pressure: 225 kPa | Escherichia coli, Pseudomonas fluorescens and Staphylococcus aureus | For Escherichia coli and Pseudomonas fluorescens, a maximum decrease of 1.6 log CFU/mL was obtained Following US treatment, Staphylococcus aureus inactivation was lower (1.05 log CFU/mL) | [59] |
Cow’s milk (raw, whole, 4% fat) | Temperature: 60 °C; frequency: 20 kHz; Time: 12 min | Escherichia coli | 3.1-log reduction | [60] |
Pasteurized raw milk | Pressure: 20 kHz; Time: 6 min; Intensity: 750 W | Pseudomonas flurescens | 5.64-log CFU/g reduction | [61] |
Ultra-High Temperature milk | Temperature: 60 °C; Pressure: 20 kHz | Listeria monocytogenes | D60&s = 0.3 min | [62] |
Skim milk | Temperature: 50 °C; Time: 30 min | Salmonella typhimurium | 3-log reduction | [63] |
Ultra-High Temperature milk (PH 6.7) | Temperature: 60 °C | Escherichia coli K12DH5 A | D60&s = 23 s | [64] |
Products | Conditions | Target Microorganism | Inactivation Effect | Ref. |
---|---|---|---|---|
Raw bulk tank milk | Temperature: 4 °C Time: 120 s | S. marcescens | drop of 1 log cycle was achieved | [72] |
Raw milk | Temperature: 5.6 °C Time: 60 s | S. aureus | decline of 7 log cycles was achieved | [73] |
Goat skim milk | Temperature: 4 °C Time: 18 s | L. monocytogenes | drop of 5 log cycles was achieved | [74] |
Whey | Temperature: 28 °C Time: 100 s Intensity: 450 W/m2 | Overall bacterial load | drop of 3.5 log cycles was achieved | [75] |
Raw cow milk | 4 °C Time: 1.5 s 0.05 J/mL | E. coli | drop of 4 log cycles was achieved | [77] |
Skim milk | Intensity: 100 W, 20 kHz Timings: 7, 15, and 30 ice bath Voltage: 420, 900, and 1800 J mL−1 | B. breve B. infantis, B. longum (BB-46) and B.animalis ssp. lactis (BB-12) | Reduced fermentation time for B. breve, B.infantis and BB-12 | [78] |
Skimmed cows’ milk | Intensity: 35 kHz, 300 W Timing: 5 min | Lb. delbrueckii | drop of 4 log cycles was achieved | [79] |
Cow’s milk | 2.5 mm probe Timings 1–3 min Intensity: 30 kHz and 2–8 W; energy density 4.8–57.6 J mL−1 | Lc. lactis subsp. lactis, Lc. lactis subsp. Cremoris | drop of 3.5 log cycles was achieved | [80] |
Products | Conditions | Target Microorganism | Inactivation Effect | Ref. |
---|---|---|---|---|
Raw milk | Temperature: 35 °C Time: 20 min Intensity: 9 kV | Escherichia coli (ATCC 25922) | drop of 3.63 log cycles was achieved | [11] |
Milk | Intensity: 250 W Time 10 min Temperature: 25 °C | E. coli (KCTC 1682) L. monocytogenes (KCTC 3569) S. typhimurium (KCTC 1925) | drop of 2.40 log cycles was achieved | [91] |
Milk | Intensity: 35–40 kV Temperature <60 °C, Single pass CHIEF | E. coli O157:H7 ATCC43895 Salmonella (5 strain mixture) L. monocytogenes (5 strain mixture) | drop of 2.95 log cycles was achieved for E. coli O157:H7 ATCC43895 reduction of 2.74 log cycles was achieved for Salmonella (5 strain mixture) reduction of 0.18 log cycles was achieved for L. monocytogenes | [92] |
Skim milk | Intensity 35–40 kV, exit temperature <60 °C, double pass CHIEF | E. coli O157:H7 (5 strain mixture) Salmonella spp. (5 strain mixture) L. monocytogenes (5 strain mixture) | drop of 4.73 log cycles was achieved for E. coli O157:H7 drop of 4.36 log cycles was achieved for Salmonella drop of 5.55 log cycles was achieved for monocytogenes | [93,94] |
Raw skim milk | Intensity: 30–40 kV One to thirty pulses Temperature: 20–72 °C | Listeria innocua | drop of 4.3 log | [53] |
Skim milk | Intensity: 40 kV cm 1, 4937 microsecond PEF plus UV | Listeria innocua, Zygosaccharomyces bailii | (3.0–5.0 log reductions) (7.9–8.8 log reductions | [95] |
Product | Conditions | Target Microorganism | Inactivation Effect | Ref. |
---|---|---|---|---|
Skim milk | MF-1.4 μm, ceramic membrane, Tp = 50 °C | Full microbial load | drop of 4.5 log cycles was achieved | [99] |
Simulated milk | 1.4 μm at 6 °C | Full microbiome | drop of 3 log cycles was achieved | [100] |
Skim milk | 55 °C, 1.4 μm pore size | Bacterial vegetative, spore-forming, and somatic cells | drop of >3.5, >4.5, and no log cycles were achieved | [101] |
Skim milk | 0.8 μm, tubular ceramic ISOFLUX membrane | Total bacterial load | drop of >2.3 log cycles was achieved | [102] |
Skim milk | 1.14 μm ceramic membrane | Total bacteria | drop of 3.1 log cycles was achieved | [104] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chughtai, M.F.J.; Farooq, M.A.; Ashfaq, S.A.; Khan, S.; Khaliq, A.; Antipov, S.; Rebezov, M.; Khayrullin, M.; Vorobeva, A.; Nelyubina, E.; et al. Role of Pascalization in Milk Processing and Preservation: A Potential Alternative towards Sustainable Food Processing. Photonics 2021, 8, 498. https://doi.org/10.3390/photonics8110498
Chughtai MFJ, Farooq MA, Ashfaq SA, Khan S, Khaliq A, Antipov S, Rebezov M, Khayrullin M, Vorobeva A, Nelyubina E, et al. Role of Pascalization in Milk Processing and Preservation: A Potential Alternative towards Sustainable Food Processing. Photonics. 2021; 8(11):498. https://doi.org/10.3390/photonics8110498
Chicago/Turabian StyleChughtai, Muhmmad Farhan Jahangir, Muhammad Adil Farooq, Syeda Aiman Ashfaq, Sonia Khan, Adnan Khaliq, Sergey Antipov, Maksim Rebezov, Mars Khayrullin, Alla Vorobeva, Elena Nelyubina, and et al. 2021. "Role of Pascalization in Milk Processing and Preservation: A Potential Alternative towards Sustainable Food Processing" Photonics 8, no. 11: 498. https://doi.org/10.3390/photonics8110498
APA StyleChughtai, M. F. J., Farooq, M. A., Ashfaq, S. A., Khan, S., Khaliq, A., Antipov, S., Rebezov, M., Khayrullin, M., Vorobeva, A., Nelyubina, E., Thiruvengadam, M., & Ali Shariati, M. (2021). Role of Pascalization in Milk Processing and Preservation: A Potential Alternative towards Sustainable Food Processing. Photonics, 8(11), 498. https://doi.org/10.3390/photonics8110498