Intensity and Coherence Characteristics of a Radial Phase-Locked Multi-Gaussian Schell-Model Vortex Beam Array in Atmospheric Turbulence
Abstract
1. Introduction
2. Theory Analysis
2.1. Analytical Description of RPLMGSMV Beam Array
2.2. Propagation Analysis
3. Numerical Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, F.; Liu, X.L.; Cai, Y.J. Propagation of partially coherent beam in turbulent atmosphere: A review. Prog. Electromagn. Res. 2015, 150, 123–143. [Google Scholar] [CrossRef]
- Peleg, A.; Moloney, J.V. Scintillation index for two Gaussian laser beams with different wavelengths in weak atmospheric turbulence. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2006, 23, 3114–3122. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Huang, Y.P.; Zhao, G.P.; Gao, Z.H.; He, D. A comparative study of standard and elegant Hermite-Gaussian beams propagating through turbulent atmosphere. J. Mod. Opt. 2011, 58, 1239–1245. [Google Scholar] [CrossRef]
- Boufalah, F.; Dalil-Essakali, L.; Nebdi, H.; Belafhal, A. Effect of turbulent atmosphere on the on-axis average intensity of Pearcey–Gaussian beam. Chin. Phys. B 2016, 25, 064208. [Google Scholar] [CrossRef]
- Zhou, G.Q. Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere. Opt. Express 2011, 19, 24699–24711. [Google Scholar] [CrossRef]
- Tang, M.M.; Zhao, D.M. Regions of spreading of Gaussian array beams propagating through oceanic turbulence. Appl. Opt. 2015, 54, 3407–3411. [Google Scholar] [CrossRef]
- Lu, L.; Wang, Z.Q.; Zhang, J.H.; Zhang, P.F.; Qiao, C.H.; Fan, C.Y.; Ji, X.L. Average intensity of M x N Gaussian array beams in oceanic turbulence. Appl. Opt. 2015, 54, 7500–7507. [Google Scholar] [CrossRef]
- Liu, Z.; Wei, H.Y.; Cai, D.M.; Jia, P.; Zhang, R.; Li, Z.J. Spiral spectrum of Laguerre-Gaussian beams in slant non-Kolmogorov atmospheric turbulence. Optik 2017, 142, 103–108. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, L.C. Quantum polarization fluctuations of an Airy beam in turbulent atmosphere in a slant path. J. Opt. Soc. Am. A 2016, 33, 1348–1352. [Google Scholar] [CrossRef]
- Dong, K.Y.; Dong, Y.; Song, Y.S.; Chang, S. The properties of anomalous hollow beam propagating in the slant atmosphere. Optik 2018, 172, 1040–1046. [Google Scholar] [CrossRef]
- Eyyuboğlu, H.T.; Cai, Y. Non-Kolmogorov spectrum scintillation aspects of dark hollow and flat topped beams. Opt. Commun. 2012, 285, 969–974. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, K.; Chen, Z.; Pu, J. Scintillation index of double vortex beams in turbulent atmosphere. Optik 2019, 181, 571–574. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, X.; Yuan, X. Performance analysis of sinh-Gaussian vortex beams propagation in turbulent atmosphere. Opt. Commun. 2019, 440, 100–105. [Google Scholar] [CrossRef]
- Huang, Y.; Yuan, Y.S.; Liu, X.L.; Zeng, J.; Wang, F.; Yu, J.Y.; Liu, L.; Cai, Y.J. Propagation of optical coherence vortex lattices in turbulent atmosphere. Appl. Sci. 2018, 8, 2476. [Google Scholar] [CrossRef]
- Zhang, L.C.; Yin, X.; Zhu, Y. Polarization fluctuations of partially coherent Hermite-Gaussian beams in a slant turbulent channel. Optik 2014, 125, 3272–3276. [Google Scholar] [CrossRef]
- Wang, D.; Wang, F.; Cai, Y.; Chen, J. Evolution properties of the complex degree of coherence of a partially coherent Laguerre–Gaussian beam in turbulent atmosphere. J. Mod. Opt. 2012, 59, 372–380. [Google Scholar] [CrossRef]
- Gao, M.; Gong, L.; Wu, P.L. Depolarization characteristics of incompletely polarized and partially coherent laser beams in slant atmospheric turbulence. Optik 2014, 125, 4860–4863. [Google Scholar] [CrossRef]
- Xu, Y.G.; Dan, Y.Q.; Zhang, B. Spreading and M-2-factor based on second-order moments for partially-coherent anomalous hollow beam in turbulent atmosphere. Optik 2016, 127, 4590–4595. [Google Scholar] [CrossRef]
- Wang, F.; Li, J.; Martinez-Piedra, G.; Korotkova, O. Propagation dynamics of partially coherent crescent-like optical beams in free space and turbulent atmosphere. Opt. Express 2017, 25, 26055–26066. [Google Scholar] [CrossRef]
- Yousefi, M.; Kashani, F.D.; Mashal, A. Analyzing the average intensity distribution and beam width evolution of phase-locked partially coherent radial flat-topped array laser beams in oceanic turbulence. Laser Phys. 2017, 27, 026202. [Google Scholar] [CrossRef]
- Kashani, F.D.; Yousefi, M. Analyzing the propagation behavior of coherence and polarization degrees of a phase-locked partially coherent radial flat-topped array laser beam in underwater turbulence. Appl. Opt. 2016, 55, 6311–6320. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.H.; Mei, Z.R.; Gu, J.G. Propagation of Gaussian Schell-model Array beams in free space and atmospheric turbulence. Opt. Laser Technol. 2016, 86, 14–20. [Google Scholar] [CrossRef]
- Liu, D.J.; Wang, Y.C.; Yin, H.M. Propagation properties of partially coherent four-petal Gaussian vortex beams in turbulent atmosphere. Opt. Laser Technol. 2016, 78, 95–100. [Google Scholar] [CrossRef]
- Mei, Z.; Tong, Z.; Korotkova, O. Electromagnetic non-uniformly correlated beams in turbulent atmosphere. Opt. Express 2012, 20, 26458–26463. [Google Scholar] [CrossRef]
- Korotkova, O.; Sahin, S.; Shchepakina, E. Multi-Gaussian Schell-model beams. J. Opt. Soc. Am. A 2012, 29, 2159–2164. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Y. Properties of a random electromagnetic multi-Gaussian Schell-model vortex beam in oceanic turbulence. Appl. Phys. B 2018, 124, 176. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Y.; Zhong, H.; Wang, G.; Yin, H.; Dong, A. Properties of multi-Gaussian correlated partially coherent anomalous hollow beam propagating in underwater oceanic turbulence. Opt. Laser Technol. 2019, 119, 105604. [Google Scholar] [CrossRef]
- Liu, D.-J.; Wang, Y.-C.; Wang, G.-Q.; Yin, H.-M.; Zhong, H.-Y. Properties of multi-Gaussian Schell-model beams carrying an edge dislocation propagating in oceanic turbulence. Chin. Phys. B 2019, 28, 104207. [Google Scholar] [CrossRef]
- Xu, H.F.; Zhang, Z.; Qu, J.; Huang, W. Propagation factors of cosine-Gaussian-correlated Schell-model beams in non-Kolmogorov turbulence. Opt. Express 2014, 22, 22479–22489. [Google Scholar] [CrossRef]
- Zhu, J.; Li, X.; Tang, H.; Zhu, K. Propagation of multi-cosine-Laguerre-Gaussian correlated Schell-model beams in free space and atmospheric turbulence. Opt. Express 2017, 25, 20071–20086. [Google Scholar] [CrossRef]
- Liu, D.; Zhong, H.; Wang, G.; Yin, H.; Wang, Y. Radial phased-locked multi-Gaussian Schell-model beam array and its properties in oceanic turbulence. Opt. Laser Technol. 2020, 124, 106003. [Google Scholar] [CrossRef]
- Ma, X.; Liu, D.; Wang, Y.; Yin, H.; Zhong, H.; Wang, G. Propagation of Rectangular Multi-Gaussian Schell-Model Array Beams through Free Space and Non-Kolmogorov Turbulence. Appl. Sci. 2020, 10, 450. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Liu, L.; Zhao, C.L.; Cai, Y.J. Multi-Gaussian Schell-model vortex beam. Phys. Lett. A 2014, 378, 750–754. [Google Scholar] [CrossRef]
- Wolf, E. Unified theory of coherence and polarization of random electromagnetic beams. Phys. Lett. A 2003, 312, 263–267. [Google Scholar] [CrossRef]
- Jeffrey, A.; Dai, H.H. Handbook of Mathematical Formulas and Integrals, 4th ed.; Academic Press Inc.: Cambridge, MA, USA, 2008. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Wang, G.; Ma, X.; Zhong, H.; Yin, H.; Wang, Y.; Liu, D. Intensity and Coherence Characteristics of a Radial Phase-Locked Multi-Gaussian Schell-Model Vortex Beam Array in Atmospheric Turbulence. Photonics 2021, 8, 5. https://doi.org/10.3390/photonics8010005
Zhao J, Wang G, Ma X, Zhong H, Yin H, Wang Y, Liu D. Intensity and Coherence Characteristics of a Radial Phase-Locked Multi-Gaussian Schell-Model Vortex Beam Array in Atmospheric Turbulence. Photonics. 2021; 8(1):5. https://doi.org/10.3390/photonics8010005
Chicago/Turabian StyleZhao, Jialu, Guiqiu Wang, Xiaolu Ma, Haiyang Zhong, Hongming Yin, Yaochuan Wang, and Dajun Liu. 2021. "Intensity and Coherence Characteristics of a Radial Phase-Locked Multi-Gaussian Schell-Model Vortex Beam Array in Atmospheric Turbulence" Photonics 8, no. 1: 5. https://doi.org/10.3390/photonics8010005
APA StyleZhao, J., Wang, G., Ma, X., Zhong, H., Yin, H., Wang, Y., & Liu, D. (2021). Intensity and Coherence Characteristics of a Radial Phase-Locked Multi-Gaussian Schell-Model Vortex Beam Array in Atmospheric Turbulence. Photonics, 8(1), 5. https://doi.org/10.3390/photonics8010005