Coated High-Refractive-Index Barium Titanate Glass Microspheres for Optically Trapped Microsphere Super-Resolution Microscopy: A Simulation Study
Abstract
:1. Introduction
2. Model of a Coated Sphere
3. Optical Trapping of Coated Spheres
3.1. Relationship between the Optical Trapping Forces and the Refractive Index Difference Δn
3.2. Optical Trapping Simulations of Coated BTG Spheres with PS Coating
4. PNJ in Coated Spheres
4.1. Electromagnetic Fields in a Multilayered Sphere
4.2. PNJ Property of Coated BTG Spheres with PS Coating
5. Proper PS Coating Thickness for Coated BTG Spheres
6. Conclusions
- (a)
- Besides the PS coating, we also used SiO2 material for the coating of BTG spheres. Although the refractive index of SiO2 () varies by about 0.13 compared to the ideal value of coating, the effects of SiO2 coating on optical trapping efficiency (see Figure S1) and PNJ property (see Figure S2) of the coated BTG sphere with a core radius of 2.5 μm are similar to that of PS coating. The overall improvement in axial trapping efficiency with an SiO2 coating is smaller than that with a PS coating, and this may be explained by the fact that the refractive index of SiO2 coating deviates from ideal value. With a proper SiO2 coating thickness, we can also obtain a highly enhanced axial trapping efficiency and a better PNJ property (see Table S1). The SiO2 coating provides us with an alternative coating material to fabricate coated BTG spheres, and it also enables us to use single-beam optical tweezers to trap coated BTG spheres for super-resolution microscopy.
- (b)
- A BTG sphere with a PS coating or SiO2 coating can be synthesized with existing procedures [46] in future work. The coated sphere enables single-beam optical trapping with a lower NA objective and a much lower laser power [37], and the lower NA objective, in turn, is beneficial to show the enhanced power of microspheres in imaging resolution.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Inouye, Y.; Kawata, S. Near-field scanning optical microscope with a metallic probe tip. Opt. Lett. 1994, 19, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Terris, B.D.; Mamin, H.J.; Rugar, D.; Studenmund, W.R.; Kino, G.S. Near-field optical data storage using a solid immersion lens. Appl. Phys. Lett. 1994, 65, 388–390. [Google Scholar] [CrossRef]
- Rogers, E.T.F.; Lindberg, J.; Roy, T.; Savo, S.; Chad, J.E.; Dennis, M.R.; Zheludev, N.I. A super-oscillatory lens optical microscope for subwavelength imaging. Nat. Mater. 2012, 11, 432–435. [Google Scholar] [CrossRef] [PubMed]
- Betzig, E.; Patterson, G.H.; Sougrat, R.; Lindwasser, O.W.; Olenych, S.; Bonifacino, J.S.; Davidson, M.W.; Lippincott-Schwartz, J.; Hess, H.F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313, 1642–1645. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Guo, W.; Li, L.; Luk’yanchuk, B.; Khan, A.; Liu, Z.; Chen, Z.; Hong, M. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun. 2011, 2, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Li, L.; Ben-Aryeh, Y.; Wang, Z.; Guo, W. Overcoming the diffraction limit induced by microsphere optical nanoscopy. J. Opt. 2013, 15, 125710. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, W.; Li, T.; Rozen, I.; Zhao, J.; Bahari, B.; Kante, B.; Wang, J. Swimming microrobot optical nanoscopy. Nano Lett. 2016, 16, 6604–6609. [Google Scholar] [CrossRef]
- Darafsheh, A.; Walsh, G.F.; Dal Negro, L.; Astratov, V.N. Optical super-resolution by high-index liquid-immersed microspheres. Appl. Phys. Lett. 2012, 101, 141128. [Google Scholar] [CrossRef] [Green Version]
- Darafsheh, A. Influence of the background medium on imaging performance of microsphere-assisted super-resolution microscopy. Opt. Lett. 2017, 42, 735–738. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, Y.; Deng, Q.; Zhao, L.; Hu, S. Contrast enhancement of microsphere-assisted super-resolution imaging in dark-field microscopy. Appl. Phys. Express 2017, 10, 082501. [Google Scholar] [CrossRef]
- Wang, F.; Liu, L.; Yu, H.; Wen, Y.; Yu, P.; Liu, Z.; Wang, Y.; Li, W.J. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging. Nat. Commun. 2016, 7, 13748. [Google Scholar] [CrossRef] [PubMed]
- Perrin, S.; Li, H.; Leong-Hoi, A.; Lecler, S.; Montgomery, P. Illumination conditions in microsphere-assisted microscopy. J. Microsc. 2019, 274, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Xia, J.; Wu, J.; Zhao, J.; Zhang, H. Switchable Photonic Nanojet by Electro-Switching Nematic Liquid Crystals. Nanomaterials 2019, 9, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Zhou, Y.; Li, Y.; Hong, M. Microsphere enhanced optical imaging and patterning: From physics to applications. Appl. Phys. Rev. 2019, 6, 021304. [Google Scholar] [CrossRef]
- Wang, Z.; Luk’yanchuk, B. Super-resolution imaging and microscopy by dielectric particle-lenses. In Label-Free Super-Resolution Microscopy; Astratov, V., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 371–406. [Google Scholar]
- Ben-Aryeh, Y. Increase of resolution by use of microspheres related to complex snell’s law. J. Opt. Soc. Am. A 2016, 33, 2284–2288. [Google Scholar] [CrossRef]
- Chen, Z.; Taflove, A.; Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique. Opt. Express 2004, 12, 1214–1220. [Google Scholar] [CrossRef]
- Luk’yanchuk, B.S.; Paniagua-Domínguez, R.N.; Minin, I.; Minin, O.; Wang, Z. Refractive index less than two: Photonic nanojets yesterday, today and tomorrow [invited]. Opt. Mater. Express 2017, 7, 1820–1847. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, L.V.; Shen, J.-T. Ultralong photonic nanojet formed by a two-layer dielectric microsphere. Opt. Lett. 2014, 39, 4120–4123. [Google Scholar] [CrossRef] [Green Version]
- Kong, S.-C.; Taflove, A.; Backman, V. Quasi one-dimensional light beam generated by a graded-index microsphere. Opt. Express 2009, 17, 3722–3731. [Google Scholar] [CrossRef] [Green Version]
- Gu, G.; Zhou, R.; Chen, Z.; Xu, H.; Cai, G.; Cai, Z.; Hong, M. Super-long photonic nanojet generated from liquid-filled hollow microcylinder. Opt. Lett. 2015, 40, 625–628. [Google Scholar] [CrossRef]
- Gu, G.; Song, J.; Liang, H.; Zhao, M.; Chen, Y.; Qu, J. Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets. Sci. Rep. 2017, 7, 5635. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Twardowski, P.; Gérard, P.; Duo, Y.; Fontaine, J.l.; Lecler, S. Ultra-narrow photonic nanojets through a glass cuboid embedded in a dielectric cylinder. Opt. Express 2018, 26, 3723–3731. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Liu, Z.; Minin, O.V.; Minin, I.V. Deep Subwavelength-Scale Light Focusing and Confinement in Nanohole-Structured Mesoscale Dielectric Spheres. Nanomaterials 2019, 9, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves, A.A.R. Photonic nanojets in optical tweezers. J. Quant. Spectrosc. Radiat. Transf. 2015, 162, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Trouillon, R.l.; Huszka, G.; Gijs, M.A.M. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Lett. 2016, 16, 4862–4870. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Moullan, N.; Auwerx, J.; Gijs, M.A.M. Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope. Small 2014, 10, 1712–1718. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Zhang, L. Liquid microdroplet as an optical component to achieve imaging of 100 nm nanostructures on a far-field microscope. J. Opt. 2018, 20, 055606. [Google Scholar] [CrossRef]
- Zhen, Z.; Huang, Y.; Feng, Y.; Shen, Y.; Li, Z. An ultranarrow photonic nanojet formed by an engineered two-layer microcylinder of high refractive-index materials. Opt. Express 2019, 27, 9178–9188. [Google Scholar] [CrossRef]
- Ashkin, A.; Dziedzic, J.M.; Bjorkholm, J.E.; Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 1986, 11, 288–290. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, M.; Kurosawa, T.; Hane, K. Micro-objective manipulated with optical tweezers. Appl. Phys. Lett. 1997, 70, 785–787. [Google Scholar] [CrossRef]
- Stanescu, S.; Galieni, V.; Ho, C.-H.; Goh, G.; Vilain, S.; Guo, W.; Sheppard, A.; Wang, T.; Li, L. Optical Tweezers Microsphere-Lens Super Resolution Imaging System. In Proceedings of the Optics in the Life Sciences Congress, San Diego, CA, USA, 2 April 2017; Optical Society of America: San Diego, CA, USA, 2017; p. BoW3A.1. [Google Scholar]
- Michihata, M.; Kim, J.; Takahashi, S.; Takamasu, K.; Mizutani, Y.; Takaya, Y. Surface imaging technique by an optically trapped microsphere in air condition. NanoManuf. Metrol. 2018, 1, 32–38. [Google Scholar] [CrossRef]
- Liu, X.; Hu, S.; Tang, Y.; Xie, Z.; Liu, J.; He, Y. Selecting a Proper Microsphere to Combine Optical Trapping with Microsphere-Assisted Microscopy. Appl. Sci. 2020, 10, 3127. [Google Scholar] [CrossRef]
- Hu, Y.; Nieminen, T.A.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. Antireflection coating for improved optical trapping. J. Appl. Phys. 2008, 103, 093119. [Google Scholar] [CrossRef] [Green Version]
- van der Horst, A.; van Oostrum, P.D.J.; Moroz, A.; van Blaaderen, A.; Dogterom, M. High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers. Appl. Opt. 2008, 47, 3196–3202. [Google Scholar] [CrossRef] [Green Version]
- Jannasch, A.; Demirörs, A.F.; van Oostrum, P.D.J.; van Blaaderen, A.; Schäffer, E. Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nat. Photonics 2012, 6, 469–473. [Google Scholar] [CrossRef]
- Walheim, S.; Schäffer, E.; Mlynek, J.; Steiner, U. Nanophase-separated polymer films as high-performance antireflection coatings. Science 1999, 283, 520–522. [Google Scholar] [CrossRef] [Green Version]
- Bormuth, V.; Jannasch, A.; Ander, M.; van Kats, C.M.; van Blaaderen, A.; Howard, J.; Schäffer, E. Optical trapping of coated microspheres. Opt. Express 2008, 16, 13831–13844. [Google Scholar] [CrossRef] [Green Version]
- Nieminen, T.A.; Loke, V.L.Y.; Stilgoe, A.B.; Knöner, G.; Brańczyk, A.M.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. Optical tweezers computational toolbox. J. Opt. A Pure Appl. Opt. 2007, 9, S196–S203. [Google Scholar] [CrossRef] [Green Version]
- Stilgoe, A.B.; Nieminen, T.A.; Knöner, G.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. The effect of mie resonances on trapping in optical tweezers. Opt. Express 2008, 16, 15039–15051. [Google Scholar] [CrossRef]
- Yang, W. Improved recursive algorithm for light scattering by a multilayered sphere. Appl. Opt. 2003, 42, 1710–1720. [Google Scholar] [CrossRef]
- Bohren, L.C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley: New York, NY, USA, 1983. [Google Scholar]
- Geints, Y.E.; Panina, E.K.; Zemlyanov, A.A. Control over parameters of photonic nanojets of dielectric microspheres. Opt. Commun. 2010, 283, 4775–4781. [Google Scholar] [CrossRef]
- Wang, N.; Li, X.; Chen, J.; Lin, Z.; Ng, J. Gradient and scattering forces of anti-reflection-coated spheres in an aplanatic beam. Sci. Rep. 2018, 8, 17423. [Google Scholar] [CrossRef] [PubMed]
- Demirörs, A.F.; Jannasch, A.; van Oostrum, P.D.J.; Schäffer, E.; Imhof, A.; van Blaaderen, A. Seeded growth of titania colloids with refractive index tunability and fluorophore-free luminescence. Langmuir 2011, 27, 1626–1634. [Google Scholar] [CrossRef] [PubMed]
Microsphere | Optical Trapping Efficiency | PNJ Property | ||
---|---|---|---|---|
Qz | Qr | FWHM (nm) | Imax (I0) | |
Uncoated PS * | 0.052 | 0.442 | 376 | 73 |
Uncoated MF * | 0.043 | 0.411 | 346 | 109 |
Uncoated BTG * | 0.010 | 0.504 | 260 | 165 |
BTG with 188 nm PS coating * | 0.105 | 0.578 | 220 | 199 |
BTG with 535 nm PS coating * | 0.088 | 0.450 | 234 | 268 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Hu, S.; Tang, Y. Coated High-Refractive-Index Barium Titanate Glass Microspheres for Optically Trapped Microsphere Super-Resolution Microscopy: A Simulation Study. Photonics 2020, 7, 84. https://doi.org/10.3390/photonics7040084
Liu X, Hu S, Tang Y. Coated High-Refractive-Index Barium Titanate Glass Microspheres for Optically Trapped Microsphere Super-Resolution Microscopy: A Simulation Study. Photonics. 2020; 7(4):84. https://doi.org/10.3390/photonics7040084
Chicago/Turabian StyleLiu, Xi, Song Hu, and Yan Tang. 2020. "Coated High-Refractive-Index Barium Titanate Glass Microspheres for Optically Trapped Microsphere Super-Resolution Microscopy: A Simulation Study" Photonics 7, no. 4: 84. https://doi.org/10.3390/photonics7040084
APA StyleLiu, X., Hu, S., & Tang, Y. (2020). Coated High-Refractive-Index Barium Titanate Glass Microspheres for Optically Trapped Microsphere Super-Resolution Microscopy: A Simulation Study. Photonics, 7(4), 84. https://doi.org/10.3390/photonics7040084