Next Article in Journal
Tunable THz Graphene Filter Based on Cross-In-Square-Shaped Resonators Metasurface
Next Article in Special Issue
Image Processing Operators Based on the Gyrator Transform: Generalized Shift, Convolution and Correlation
Previous Article in Journal / Special Issue
Biofunctionalized Polyelectrolyte Microcapsules Encoded with Fluorescent Semiconductor Nanocrystals for Highly Specific Targeting and Imaging of Cancer Cells
Open AccessArticle

Lithographic Mask Defects Analysis on an MMI 3 dB Splitter

1
Departamento de Engenharia Eletrotécnica, FCT, Universidade Nova de Lisboa, Campus da Caparica, Faculdade de Ciências e Tecnologia, 2829-516 Caparica, Portugal
2
CTS-UNINOVA, Departamento de Engenharia Eletrotécnica, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
3
ISEL—Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
*
Author to whom correspondence should be addressed.
This paper is an extended version of our paper published in: SPIE Paper Number: AOP100-40. Lourenço, P.; Fantoni, A.; Vieira, M. Simulation analysis of a thin film semiconductor MMI 3 dB splitter operating in the visible range. In Proceedings of AOP 2019, IV International Conference on Applications of Optics and Photonics, Lisbon, Portugal, 31 May–4 June 2019.
Photonics 2019, 6(4), 118; https://doi.org/10.3390/photonics6040118
Received: 8 October 2019 / Revised: 2 November 2019 / Accepted: 5 November 2019 / Published: 9 November 2019
In this paper, we present a simulation study that intends to characterize the influence of defects introduced by manufacturing processes on the geometry of a semiconductor structure suitable to be used as a multimode interference (MMI) 3 dB power splitter. Consequently, these defects will represent refractive index fluctuations which, on their turn, will drastically affect the propagation conditions within the structure. Our simulations were conducted on a software platform that implements the Beam Propagation numerical method. This work supports the development of a biomedical plasmonic sensor, which is based on the coupling between propagating modes in a dielectric waveguide and the surface plasmon mode that is generated on an overlaid metallic thin film, and where the output readout is achieved through an a-Si:H photodiode. By using a multimode interference 1 × 2 power splitter, this sensor device can utilize the non-sensing arm as a reference one, greatly facilitating its calibration and enhancing its performance. As the spectral sensitivity of amorphous silicon is restricted to the visible range, this sensing device should be operating on a wavelength not higher than 700 nm; thus, a-SiNx has been the material hereby proposed for both waveguides and MMI power splitter. View Full-Text
Keywords: a-SiNx; beam propagation method; multimode interference; 3 dB splitter a-SiNx; beam propagation method; multimode interference; 3 dB splitter
Show Figures

Figure 1

MDPI and ACS Style

Lourenço, P.; Fantoni, A.; Costa, J.; Vieira, M. Lithographic Mask Defects Analysis on an MMI 3 dB Splitter. Photonics 2019, 6, 118. https://doi.org/10.3390/photonics6040118

AMA Style

Lourenço P, Fantoni A, Costa J, Vieira M. Lithographic Mask Defects Analysis on an MMI 3 dB Splitter. Photonics. 2019; 6(4):118. https://doi.org/10.3390/photonics6040118

Chicago/Turabian Style

Lourenço, Paulo; Fantoni, Alessandro; Costa, João; Vieira, Manuela. 2019. "Lithographic Mask Defects Analysis on an MMI 3 dB Splitter" Photonics 6, no. 4: 118. https://doi.org/10.3390/photonics6040118

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop