A Monolithically Integrated Laser-Photodetector Chip for On-Chip Photonic and Microwave Signal Generation
Abstract
:1. Introduction
2. Device Structure and Fabrication Process
3. Experimental Setup and Results
3.1. Dynamic States
3.2. High-Quality Microwave Signal Generation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Marpaung, D.; Roeloffzen, C.; Heideman, R.; Leinse, A.; Sales, S.; Capmany, J. Integrated microwave photonics. Laser Photonics Rev. 2013, 7, 506–538. [Google Scholar] [CrossRef] [Green Version]
- Capmany, J.; Muñoz, P. Integrated Microwave Photonics for Radio Access Networks. J. Lightwave Technol. 2014, 32, 2849–2861. [Google Scholar] [CrossRef]
- Kim, N.; Shin, J.; Sim, E.; Lee, C.W.; Yee, D.-S.; Min, Y.J.; Jang, Y.; Park, K.H. Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation. Opt. Express 2009, 17, 13851–13859. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liang, S.; Zhu, H.; Wang, W. Widely tunable dual-mode distributed feedback laser fabricated by selective area growth technology integrated with Ti heaters. Opt. Lett. 2013, 38, 3050–3053. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Zhu, H.; Liang, S.; Yu, W.; Lou, C.; Zhao, L. All-optical clock recovery using parallel ridge-width varied DFB lasers integrated with Y-branch waveguide coupler. Opt. Commun. 2012, 285, 311–314. [Google Scholar]
- Bauer, S.; Brox, O.; Kreissl, J.; Sahin, G.; Sartorius, B. Optical microwave source. Electron. Lett. 2002, 38, 334–335. [Google Scholar] [CrossRef]
- Yu, L.; Lu, D.; Pan, B.; Zhao, L.; Wu, J.; Xia, G.; Wu, Z.; Wang, W. Monolithically integrated amplified feedback lasers for high-quality microwave and broadband chaos generation. J. Lightwave Technol. 2014, 32, 3595–3601. [Google Scholar] [CrossRef]
- Yu, L.; Lu, D.; Zhao, L.; Li, Y.; Ji, C.; Pan, J.; Zhu, H.; Wei, W. Wavelength and Mode-Spacing Tunable Dual-Mode Distributed Bragg Reflector Laser. IEEE Photonics. Technol. Lett. 2013, 25, 576–579. [Google Scholar] [CrossRef]
- Pan, B.; Lu, D.; Sun, Y.; Yu, L.; Zhang, L.; Zhao, L. Tunable optical microwave generation using self-injection locked monolithic dual-wavelength amplified feedback laser. Opt. Lett. 2014, 39, 6395–6398. [Google Scholar] [CrossRef]
- Yu, L.; Lu, D.; Sun, Y.; Zhao, L. Tunable photonic microwave generation by directly modulating a dual-wavelength amplified feedback laser. Opt. Commun. 2015, 345, 57–61. [Google Scholar] [CrossRef]
- Lu, D.; Pan, B.; Chen, H.; Zhao, L. Frequency-tunable optoelectronic oscillator using a dual-mode amplified feedback laser as an electrically controlled active microwave photonic filter. Opt. Lett. 2015, 40, 4340–4343. [Google Scholar] [CrossRef] [PubMed]
- Simpson, T.B.; Liu, J.M.; Gavrielides, A.; Kovanis, V.; Alsing, P.M. Period-doubling route to chaos in a semiconductor laser subject to optical injection. Appl. Phys. Lett. 1994, 64, 3539–3541. [Google Scholar] [CrossRef]
- Wang, A.-B.; Wang, Y.-C.; Wang, J.-F. Route to broadband chaos in a chaotic laser diode subject to optical injection. Opt. Lett. 2009, 34, 1144–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mork, J.; Mark, J.; Tromborg, B. Route to chaos and competition between relaxation oscillations for a semiconductor laser with optical feedback. Phys. Rev. Lett. 1990, 65, 1999–2002. [Google Scholar] [CrossRef] [PubMed]
- Mukai, T.; Otsuka, K. New route to optical chaos: Successive-subharmonic-oscil- lation cascade in a semiconductor laser coupled to an external cavity. Phys. Rev. Lett. 1985, 55, 1711–1714. [Google Scholar] [CrossRef]
- Lin, F.Y.; Liu, J.M. Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback. IEEE J. Quantum Electron. 2003, 39, 562–568. [Google Scholar] [CrossRef]
- Tang, S.; Liu, J.M. Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback. IEEE J. Quantum Electron. 2001, 37, 329–336. [Google Scholar] [CrossRef]
- Sunada, S.; Harayama, T.; Arai, K.; Yoshimura, K.; Davis, P.; Tsuzuki, K.; Uchida, A. Chaos laser chips with delayed optical feedback using a passive ring waveguide. Opt. Express 2011, 19, 5713–5724. [Google Scholar] [CrossRef]
- Bauer, S.; Brox, O.; Kreissl, J.; Sartorius, B.; Radziunas, M.; Sieber, J.; Wünsche, H.-J.; Henneberger, F. Nonlinear dynamics of semiconductor lasers with active optical feedback. Phys. Rev. E 2004, 69, 016206. [Google Scholar] [CrossRef] [Green Version]
- Wünsche, H.-J.; Bauer, S.; Kreissl, J.; Ushakov, O.; Korneyev, N.; Henneberger, F.; Wille, E. Synchronization of delay-coupled oscillators: A study of semiconductor lasers. Phys. Rev. Lett. 2005, 94, 163901. [Google Scholar] [CrossRef]
- Pan, B.; Lu, D.; Zhao, L. Broadband Chaos Generation Using Monolithic Dual-Mode Laser With Optical Feedback. IEEE Photonics. Technol. Lett. 2015, 27, 2516–2519. [Google Scholar] [CrossRef]
- Wu, J.-G.; Zhao, L.-J.; Wu, Z.-M.; Lu, D.; Tang, X.; Zhong, Z.-Q.; Xia, G.-Q. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip. Opt. Express 2013, 21, 23358–23364. [Google Scholar] [CrossRef] [PubMed]
- Dijk, F.V.; Kervella, G.; Lamponi, M.; Chtioui, M.; Carpintero, G. Integrated InP Heterodyne Millimeter Wave Transmitter. IEEE Photonics. Technol. Lett. 2014, 26, 965–968. [Google Scholar] [CrossRef]
- Lo, M.C.; Zarzuelo, A.; Guzman, R.; Carpintero, G. Monolithically integrated microwave frequency synthesizer on InP generic foundry platform. J. Lightwave Technol. 2018, 36, 4626–4632. [Google Scholar] [CrossRef]
- Pan, B.; Yu, L.; Lu, D.; Zhang, L.; Zhao, L. Simulation and experimental characterization of a dual-mode two-section amplified feedback laser with mode separation over 100 GHz. Chin. Opt. Lett. 2014, 12, 1–5. [Google Scholar]
- Pan, B.; Lu, D.; Zhang, L.; Zhao, L. Widely Tunable Amplified Feedback Laser With Beating-Frequency Covering 60-GHz Band. IEEE Photonics Technol. Lett. 2015, 27, 2103–2106. [Google Scholar] [CrossRef]
- Pan, B.; Lu, D.; Zhang, L.; Zhao, L. A widely tunable optoelectronic oscillator based on directly modulated dual-mode laser. IEEE Photonics J. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Chen, G.; Lu, D.; Liang, S.; Guo, L.; Zhao, W.; Huang, Y.; Zhao, L. Frequency-tunable Optoelectronic Oscillator With Synchronized Dual-Wavelength Narrow-Linewidth Laser Output. IEEE Access 2018, 6, 69224–69229. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, H.; Chen, G.; Lu, D.; Zhao, L. A Monolithically Integrated Laser-Photodetector Chip for On-Chip Photonic and Microwave Signal Generation. Photonics 2019, 6, 102. https://doi.org/10.3390/photonics6040102
Qi H, Chen G, Lu D, Zhao L. A Monolithically Integrated Laser-Photodetector Chip for On-Chip Photonic and Microwave Signal Generation. Photonics. 2019; 6(4):102. https://doi.org/10.3390/photonics6040102
Chicago/Turabian StyleQi, Hefei, Guangcan Chen, Dan Lu, and Lingjuan Zhao. 2019. "A Monolithically Integrated Laser-Photodetector Chip for On-Chip Photonic and Microwave Signal Generation" Photonics 6, no. 4: 102. https://doi.org/10.3390/photonics6040102
APA StyleQi, H., Chen, G., Lu, D., & Zhao, L. (2019). A Monolithically Integrated Laser-Photodetector Chip for On-Chip Photonic and Microwave Signal Generation. Photonics, 6(4), 102. https://doi.org/10.3390/photonics6040102