Latest Achievements in Polymer Optical Fiber Gratings: Fabrication and Applications
Abstract
:1. Introduction
2. Fabrication of Polymer Optical Fiber Gratings
2.1. Optimization of the Fabrication Process
2.2. Different Polymer Materials
2.3. Special Grating Devices
3. Applications
4. Conclusion and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Webb, D.J. Fibre Bragg grating sensors in polymer optical fibres. Meas. Sci. Technol. 2015, 26, 092004. [Google Scholar] [CrossRef] [Green Version]
- Prado, A.R.; Leal-Junior, A.G.; Marques, C.; Leite, S.; De Sena, G.L.; Machado, L.C.; Frizera, A.; Ribeiro, M.R.; Pontes, M.J. Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems. Opit. Express 2017, 25, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Markos, C.; Stefani, A.; Nielsen, K.; Rasmussen, H.K.; Yuan, W.; Bang, O. High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Opt. Express 2013, 21, 4758–4765. [Google Scholar] [CrossRef]
- Woyessa, G.; Fasano, A.; Markos, C.; Stefani, A.; Rasmussen, H.K.; Bang, O. Zeonex microstructured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing. Opt. Mater. Express 2017, 7, 286. [Google Scholar] [CrossRef]
- Fasano, A.; Woyessa, G.; Stajanca, P.; Markos, C.; Stefani, A.; Nielsen, K.; Rasmussen, H.K.; Krebber, K.; Bang, O. Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors. Opt. Mater. Express 2016, 6, 649. [Google Scholar] [CrossRef] [Green Version]
- Gierej, A.; Vagenende, M.; Filipkowski, A.; Siwicki, B.; Buczynski, R.; Thienpont, H.; Van Vlierberghe, S.; Geernaert, T.; Dubruel, P.; Berghmans, F. Poly (D,L-lactic acid) (PDLLA) biodegradable and biocompatible polymer optical fiber. J. Lightwave Technol. 2019. [Google Scholar] [CrossRef]
- Koike, Y.; Koike, K. Progress in low-loss and high-bandwidth plastic optical fibers. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 2–17. [Google Scholar] [CrossRef]
- Koike, Y.; Asai, M. The future of plastic optical fiber. NPG Asia Mater. 2009, 1, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Zubia, J.; Arrue, J. Plastic optical fibers: An introduction to their technological processes and applications. Opt. Fiber Technol. 2001, 7, 101–140. [Google Scholar] [CrossRef]
- Polishuk, P. Plastic optical fibers branch out. IEEE Commun. Mag. 2006, 44, 140–148. [Google Scholar] [CrossRef]
- Knight, J.C.; Birks, T.A.; Russell, P.S.J.; Atkin, D.M. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 1997, 22, 484. [Google Scholar] [CrossRef] [PubMed]
- Argyros, A. Microstructured polymer optical fibers. J. Lightwave Technol. 2009, 27, 1571–1579. [Google Scholar] [CrossRef]
- Akande, K.O.; Popoola, W.O. Experimental Demonstration of Subband Index Techniques for m-CAP in Short-Range SI-POF Links. IEEE Photonics Technol. Lett. 2018, 30, 2155–2158. [Google Scholar] [CrossRef]
- Vinogradov, J.; Kruglov, R.; Engelbrecht, R.; Ziemann, O.; Sheu, J.K.; Chi, K.L.; Wun, J.M.; Shi, J.W. GaN-based cyan light-emitting diode with up to 1-GHz bandwidth for high-speed transmission over SI-POF. IEEE Photonics J. 2017, 9, 1–7. [Google Scholar] [CrossRef]
- Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Ortega, B. Compact multichannel demultiplexer for WDM-POF networks based on spatially overlapped FBGs. Electron. Lett. 2016, 52, 635–637. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-Y.; Lu, H.-H.; Wang, Y.-C.; Wang, Z.-H.; Su, C.-W.; Lu, Y.-F.; Tsai, W.-S. An 82-m 9 Gb/s PAM4 FSO-POF-UWOC Convergent System. IEEE Photonics J. 2019, 11, 1–9. [Google Scholar] [CrossRef]
- Binh, P.H.; Trong, V.D. 500 MBIT/s OOK-NRZ transceiver for 50 m GI-POF using 100 MHz RC-led. Microw. Opt. Technol. Lett. 2015, 57, 826–830. [Google Scholar] [CrossRef]
- Aguirre, J.; Sánchez-Azqueta, C.; Guerrero, E.; Gimeno, C.; Celma, S. 3.125 Gbit/s CMOS transceiver for duobinary modulation over 50-m SI-POF channels. Electron. Lett. 2017, 53, 3–4. [Google Scholar] [CrossRef]
- Li, X.; Bamiedakis, N.; Wei, J.; McKendry, J.J.; Xie, E.; Ferreira, R.; Gu, E.; Dawson, M.D.; Penty, R.V.; White, I.H. μlED-Based Single-Wavelength Bi-directional POF Link with 10 Gb/s Aggregate Data Rate. J. Lightwave Technol. 2015, 33, 3571–3576. [Google Scholar] [CrossRef]
- Lin, C.Y.; Li, C.Y.; Lu, H.H.; Chang, C.H.; Peng, P.C.; Lin, C.R.; Chen, J.H. A hybrid CATV/16-QAM-OFDM in-house network over SMF and GI-POF/VLC transport. IEEE Photonics Technol. Lett. 2015, 27, 526–529. [Google Scholar] [CrossRef]
- Gimeno, C.; Guerrero, E.; Sanchez-Azqueta, C.; Aguirre, J.; Aldea, C.; Celma, S. Multi-rate adaptive equalizer for transmission over up to 50-m SI-POF. IEEE Photonics Technol. Lett. 2017, 29, 587–590. [Google Scholar] [CrossRef]
- Ishigure, T.; Nihei, E.; Yamazaki, S.; Kobayashi, K.; Koike, Y. 2.5Gbit/s 100m data transmission using graded-index polymer optical fibre and high-speed laser diode at 650nm wavelength. Electron. Lett. 1995, 31, 467–469. [Google Scholar] [CrossRef]
- Koike, Y.; Inoue, A. High-Speed Graded-Index Plastic Optical Fibers and Their Simple Interconnects for 4K/8K Video Transmission. J. Lightwave Technol. 2016, 34, 1551–1555. [Google Scholar] [CrossRef]
- Pinzón, P.J.; Pérez, I.; Vázquez, C. Visible WDM System for Real-Time Multi-Gb/s Bidirectional Transmission over 50-m SI-POF. IEEE Photonics Technol. Lett. 2016, 28, 1696–1699. [Google Scholar] [CrossRef]
- Osahon, I.N.; Rajbhandari, S.; Popoola, W.O. Performance comparison of equalization techniques for SI-POF multi-gigabit communication with PAM-M and device non-linearities. J. Lightwave Technol. 2018, 36, 2301–2308. [Google Scholar] [CrossRef]
- Forni, F.; Shi, Y.; Tran, N.C.; Van Den Boom, H.P.A.; Tangdiongga, E.; Koonen, A.M.J. Multiformat wired and wireless signals over large-core plastic fibers for in-home network. J. Lightwave Technol. 2018, 36, 3444–3452. [Google Scholar]
- Peters, K. Polymer optical fiber sensors—A review. Smart Mater. Struct. 2011, 20, 013002. [Google Scholar] [CrossRef]
- Bilro, L.; Alberto, N.; Pinto, J.L.; Nogueira, R. Optical sensors based on plastic fibers. Sensors 2012, 12, 12184–12207. [Google Scholar] [CrossRef]
- Durana, G.; Poisel, H.; Zubia, J.; Saez, I.; Gomez, J. Monitoring the vertical deflection of a flap rudder using a novel fibre optical strain sensor. IEEE Sens. J. 2009, 9, 3–7. [Google Scholar] [CrossRef]
- Babchenko, A.; Maryles, J. Graded-index plastic optical fiber for deformation sensing. Opt. Lasers Eng. 2007, 45, 757–760. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Frizera, A.; Marques, C.; Sánchez, M.R.A.; Botelho, T.R.; Segatto, M.V.; Pontes, M.J. Polymer optical fiber strain gauge for human-robot interaction forces assessment on an active knee orthosis. Opt. Fiber Technol. 2018, 41, 205–211. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Frizera, A.; Avellar, L.M.; Marques, C.; Pontes, M.J. Polymer Optical Fiber for In-Shoe Monitoring of Ground Reaction Forces during the Gait. IEEE Sens. J. 2018, 18, 2362–2368. [Google Scholar] [CrossRef]
- Valencia-Jimenez, N.; Leal-Junior, A.; Avellar, L.; Vargas-Valencia, L.; Caicedo-Rodríguez, P.; Ramírez-Duque, A.A.; Lyra, M.; Marques, C.; Bastos, T.; Frizera, A. A Comparative Study of Markerless Systems Based on Color-Depth Cameras, Polymer Optical Fiber Curvature Sensors, and Inertial Measurement Units: Towards Increasing the Accuracy in Joint Angle Estimation. Electronics 2019, 8, 173. [Google Scholar] [CrossRef]
- Aitkulov, A.; Tosi, D. Optical fiber sensor based on plastic optical fiber and smartphone for measurement of the breathing rate. IEEE Sens. J. 2019. [Google Scholar] [CrossRef]
- Wong, Y.M.; Scully, P.J.; Bartlett, R.J.; Kuang, K.S.C.; Cantwell, W.J. Plastic optical fibre sensors for environmental monitoring: Biofouling and strain applications. Strain 2003, 39, 115–119. [Google Scholar] [CrossRef]
- Teng, C.; Liu, H.; Deng, H.; Deng, S.; Yang, H.; Xu, R.; Chen, M.; Yuan, L.; Zheng, J. Liquid Level Sensor Based on a V-Groove Structure Plastic Optical Fiber. Sensors 2018, 18, 3111. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Frizera, A.; Marques, C.; Sanchez, M.R.A.; Dos Santos, W.M.; Siqueira, A.A.G.; Segatto, M.V.; Pontes, M.J. Polymer Optical Fiber for Angle and Torque Measurements of a Series Elastic Actuator’s Spring. J. Lightwave Technol. 2018, 36, 1698–1705. [Google Scholar] [CrossRef]
- Shan, M.; Min, R.; Zhong, Z.; Wang, Y.; Zhang, Y. Differential reflective fiber-optic angular displacement sensor. Opt. Laser Technol. 2015, 68, 124–128. [Google Scholar] [CrossRef]
- Shan, M.; Min, R.; Zhong, Z.; Wang, Y.; Hao, B.; Zhang, Y. Differential transmissive fiber-optic distance sensor. Microw. Opt. Technol. Lett. 2014, 56, 1104–1107. [Google Scholar] [CrossRef]
- Sequeira, F.; Duarte, D.; Bilro, L.; Rudnitskaya, A.; Pesavento, M.; Zeni, L.; Cennamo, N. Refractive index sensing with D-shaped plastic optical fibers for chemical and biochemical applications. Sensors 2016, 16, 2119. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.; Jing, N.; Yu, F.; Ding, Y.; Zheng, J. Refractive index sensor based on a multi-notched plastic optical fiber. Appl. Opt. 2017, 56, 1833–1838. [Google Scholar] [CrossRef]
- Liehr, S.; Lenke, P.; Wendt, M.; Krebber, K.; Seeger, M.; Thiele, E.; Metschies, H.; Gebreselassie, B.; Munich, J.C. Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring. IEEE Sens. J. 2009, 9, 1330–1338. [Google Scholar] [CrossRef]
- Mizuno, Y.; Nakamura, K. Brillouin Scattering in polymer optical fibers: Fundamental properties and potential use in sensors. Polymers 2011, 3, 886–898. [Google Scholar] [CrossRef]
- Rao, Y.J. In-fibre Bragg grating sensors. Meas. Sci. Technol. 1997, 8, 355–375. [Google Scholar] [CrossRef]
- Xiong, Z.; Peng, G.D.; Wu, B.; Chu, P.L. Highly Tunable Bragg Gratings in Single-Mode Polymer Optical Fibers. IEEE Photonics Technol. Lett. 1999, 11, 352–354. [Google Scholar] [CrossRef]
- Dobb, H.; Webb, D.J.; Kalli, K.; Argyros, A.; Large, M.C.J.; van Eijkelenborg, M.A. Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers. Opt. Lett. 2005, 30, 3296. [Google Scholar]
- Sáez-Rodríguez, D.; Cruz, J.L.; Johnson, I.; Webb, D.J.; Large, M.C.J.; Argyros, A. Water diffusion into UV inscripted long period grating in microstructured polymer fiber. IEEE Sens. J. 2010, 10, 1169–1173. [Google Scholar] [CrossRef]
- Johnson, I.P.; Kalli, K.; Webb, D.J. 827 nm Bragg grating sensor in multimode microstructured polymer optical fibre. Electron. Lett. 2010, 46, 3–4. [Google Scholar] [CrossRef]
- Yuan, W.; Khan, L.; Webb, D.J.; Kalli, K.; Rasmussen, H.K.; Stefani, A.; Bang, O. Humidity insensitive TOPAS polymer fiber Bragg grating sensor. Opt. Express 2011, 19, 19731. [Google Scholar] [CrossRef] [Green Version]
- Koike, Y.; Ishigure, T.; Nihei, E. High-Bandwidth Graded-Index Polymer Optical Fiber. J. Lightwave Technol. 1995, 13, 1475–1489. [Google Scholar] [CrossRef]
- Lacraz, A.; Polis, M.; Theodosiou, A.; Koutsides, C.; Kalli, K. Femtosecond Laser Inscribed Bragg Gratings in Low Loss CYTOP Polymer Optical Fiber. IEEE Photonics Technol. Lett. 2015, 27, 693–696. [Google Scholar] [CrossRef]
- Theodosiou, A.; Hu, X.; Caucheteur, C.; Kalli, K. Bragg Gratings and Fabry-Perot Cavities in Low-Loss Multimode CYTOP Polymer Fiber. IEEE Photonics Technol. Lett. 2018, 30, 857–860. [Google Scholar] [CrossRef]
- Leal-Junior, A.; Theodosiou, A.; Díaz, C.; Marques, C.; Pontes, M.J.; Kalli, K.; Frizera-Neto, A. Polymer Optical Fiber Bragg Gratings in CYTOP Fibers for Angle Measurement with Dynamic Compensation. Polymers 2018, 10, 674. [Google Scholar] [CrossRef]
- Leal-junior, A.G.; Theodosiou, A.; Marques, C.; Pontes, M.J.; Kalli, K.; Frizera, A. Thermal Treatments and Compensation Techniques for the Improved Response of FBG Sensors in POFs. J. Lightwave Technol. 2018, 36, 3611–3617. [Google Scholar] [CrossRef]
- Ishikawa, R.; Lee, H.; Lacraz, A.; Theodosiou, A.; Kalli, K.; Mizuno, Y. Pressure Dependence of Fiber Bragg Grating Inscribed in Perfluorinated Polymer Fiber. IEEE Photonics Technol. Lett. 2017, 29, 2167–2170. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Theodosiou, A.; Min, R.; Casas, J.; Díaz, C.R.; dos Santos, W.M.; Pontes, M.J.; Siqueira, A.A.G.; Marques, C.; Kalli, K.; Frizera, A. Quasi-Distributed Torque and Displacement Sensing on a Series Elastic Actuator_s Spring using FBG arrays inscribed in CYTOP Fibers. IEEE Sens. J. 2019. [Google Scholar] [CrossRef]
- Koerdt, M.; Kibben, S.; Hesselbach, J.; Brauner, C.; Herrmann, A.S.; Vollertsen, F.; Kroll, L. Fabrication and Characterization of Bragg Gratings in a Graded-index Perfluorinated Polymer Optical Fiber. Procedia Technol. 2014, 15, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Min, R.; Ortega, B.; Leal-Junior, A.; Marques, C. Fabrication and Characterization of Bragg Grating in CYTOP POF at 600-nm Wavelength. IEEE Sens. Lett. 2018, 2, 1–4. [Google Scholar] [CrossRef]
- Zheng, Y.; Bremer, K.; Roth, B. Investigating the strain, temperature and humidity sensitivity of a multimode graded-index perfluorinated polymer optical fiber with bragg grating. Sensors 2018, 18, 1436. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Pun, C.-F.J.; Tam, H.-Y.; Mégret, P.; Caucheteur, C. Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber. Opt. Express 2014, 22, 18807. [Google Scholar] [CrossRef]
- Hu, X.; Saez-Rodriguez, D.; Marques, C.; Bang, O.; Webb, D.J.; Mégret, P.; Caucheteur, C. Polarization effects in polymer FBGs: Study and use for transverse force sensing. Opt. Express 2015, 23, 4581. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, W.; Liu, C.; Hong, Y.; Webb, D.J. Enhancing the humidity response time of polymer optical fiber Bragg grating by using laser micromachining. Opt. Express 2015, 23, 25942. [Google Scholar] [CrossRef] [PubMed]
- Rajan, G.; Noor, Y.M.; Liu, B.; Ambikairaja, E.; Webb, D.J.; Peng, G.D. A fast response intrinsic humidity sensor based on an etched singlemode polymer fiber Bragg grating. Sens. Actuators A Phys. 2013, 203, 107–111. [Google Scholar] [CrossRef]
- Dobb, H.; Carroll, K.; Webb, D.J.; Kalli, K.; Komodromos, M.; Themistos, C.; Peng, G.D.; Argyros, A.; Large, M.C.J.; van Eijkelenborg, M.A.; et al. Grating based devices in polymer optical fibre. Proc. SPIE 2006, 6189, 618901. [Google Scholar]
- Hu, X.; Pun, C.-F.J.; Tam, H.-Y.; Mégret, P.; Caucheteur, C. Tilted Bragg gratings in step-index polymer optical fiber. Opt. Lett. 2014, 39, 6835. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yan, B.; Zhang, Q.; Peng, G.D.; Wen, J.; Zhang, J. Fabrication of polymer optical fibre (POF) gratings. Sensors 2017, 17, 511. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.A.F.; Antunes, P.; Mergo, P.; Webb, D.J.; Andre, P. Chirped Bragg Gratings in PMMA Step-Index Polymer Optical Fiber. IEEE Photonics Technol. Lett. 2017, 29, 500–503. [Google Scholar] [CrossRef]
- Canning, J. Properties of specialist fibres and bragg gratings for optical fiber sensors. J. Sens. 2009, 2009, 871580. [Google Scholar] [CrossRef]
- Marques, C.A.F.; Webb, D.J.; Andre, P. Polymer optical fiber sensors in human life safety. Opt. Fiber Technol. 2017, 36, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Marques, C.; Leal-Junior, A.; Min, R.; Domingues, M.; Leitão, C.; Antunes, P.; Ortega, B.; André, P. Advances on Polymer Optical Fiber Gratings Using a KrF Pulsed Laser System Operating at 248 nm. Fibers 2018, 6, 13. [Google Scholar] [CrossRef]
- Broadway, C.; Rui, M.; Leal Junior, A.G.; Marques, C.; Caucheteur, C. Towards commercial polymer fiber Bragg grating sensors: Review and applications. J. Lightwave Technol. 2018, 8724, 1. [Google Scholar] [CrossRef]
- Berghmans, F.; Geernaert, T.; Baghdasaryan, T.; Thienpont, H. Challenges in the fabrication of fibre Bragg gratings in silica and polymer microstructured optical fibres. Laser Photonics Rev. 2014, 8, 27–52. [Google Scholar] [CrossRef]
- Nogueira, R.; Oliveira, R.; Bilro, L.; Heidarialamdarloo, J. New advances in polymer fiber Bragg gratings. Opt. Laser Technol. 2016, 78, 104–109. [Google Scholar] [CrossRef]
- Stefani, A.; Stecher, M.; Town, G.E.; Bang, O. Direct writing of fiber bragg grating in microstructured polymer optical fiber. IEEE Photonics Technol. Lett. 2012, 24, 1148–1150. [Google Scholar] [CrossRef]
- Li, Z.C.; Tam, H.Y.; Xu, L.X.; Zhang, Q.J. Fabrication of long-period gratings in poly(methyl methacrylate-co-methyl vinyl ketone-cobenzyl methacrylate)-core polymer optical fiber by use of a mercury lamp. Opt. Lett. 2005, 30, 1117–1119. [Google Scholar] [CrossRef] [PubMed]
- Kowal, D.; Statkiewicz-Barabach, G.; Mergo, P.; Urbanczyk, W. Inscription of long period gratings using an ultraviolet laser beam in the diffusion-doped microstructured polymer optical fiber. Appl. Opt. 2015, 54, 6327–6333. [Google Scholar] [CrossRef]
- Xingsheng, X.; Hai, M.; Qijin, Z. Properties of polarized laser-induced birefringent gratings in azobenzene-doped poly(methyl methecrylate) optical fibers. Opt. Commun. 2002, 204, 137–143. [Google Scholar] [CrossRef]
- Hiscocks, M.P.; van Eijkelenborg, M.A.; Argyros, A.; Large, M.C.J. Stable imprinting of long-period gratings in microstructured polymer optical fibre. Opt. Express 2006, 14, 4644. [Google Scholar] [CrossRef]
- Tomlinson, W.J.; Kaminow, I.P.; Chandross, E.A.; Fork, R.L.; Silfvast, W.T. Photoinduced Refractive Index Increase in Poly(methylmethacrylate) and its Applications. Appl. Phys. Lett. 1970, 16, 486–489. [Google Scholar] [CrossRef]
- Yu, J.; Tao, X.; Tam, H. Trans-4-stilbenemethanol-doped photosensitive polymer fibers and gratings. Opt. Lett. 2004, 29, 156. [Google Scholar] [CrossRef] [PubMed]
- Saez-Rodriguez, D.; Nielsen, K.; Bang, O.; Webb, D.J. Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit. Opt. Lett. 2014, 39, 3421–3424. [Google Scholar] [CrossRef] [PubMed]
- Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Webb, D.J. Time-dependent variation of fiber Bragg grating reflectivity in PMMA-based polymer optical fibers. Opt. Lett. 2015, 40, 1476–1479. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Kinet, D.; Mégret, P.; Caucheteur, C. Control over photo-inscription and thermal annealing to obtain high-quality Bragg gratings in doped PMMA optical fibers. Opt. Lett. 2016, 41, 2930–2933. [Google Scholar] [CrossRef] [PubMed]
- Pospori, A.; Marques, C.A.F.; Bang, O.; Webb, D.J.; André, P. Polymer optical fiber Bragg grating inscription with a single UV laser pulse. Opt. Express 2017, 25, 9028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, W.; Stefani, A.; Bache, M.; Jacobsen, T.; Rose, B.; Herholdt-Rasmussen, N.; Nielsen, F.K.; Andresen, S.; Sørensen, O.B.; Hansen, K.S.; et al. Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings. Opt. Commun. 2011, 284, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Kinet, D.; Chah, K.; Pun, C.-F.J.; Tam, H.-Y.; Caucheteur, C. Bragg grating inscription in PMMA optical fibers using 400-nm femtosecond pulses. Opt. Lett. 2017, 42, 2794. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Li, Z.; Zheng, R.; Chen, R.; Yan, Q.; Zhang, Q.; Peng, G.; Zou, G.; Ming, H.; Zhu, B. Birefringent azopolymer long period fiber gratings induced by 532 nm polarized laser. Opt. Commun. 2009, 282, 2348–2353. [Google Scholar] [CrossRef]
- Baum, A.; Scully, P.J.; Basanta, M.; Thomas, C.L.P.; Fielden, P.R.; Goddard, N.J.; Perrie, W.; Chalker, P.R. Photochemistry of refractive index structures in poly(methyl methacrylate) by femtosecond laser irradiation. Opt. Lett. 2007, 32, 190–192. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Peng, G.D.; Chu, P.L.; Koike, Y.; Watanabe, Y. Photosensitivity in low-loss perfluoropolymer(CYTOP)fibre material. Electron. Lett. 2001, 37, 347–348. [Google Scholar] [CrossRef]
- Liu, H.Y.; Peng, G.D.; Chu, P.L. Polymer fiber Bragg gratings with 28-dB transmission rejection. IEEE Photonics Technol. Lett. 2002, 14, 935–937. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.B.; Liu, H.Y.; Peng, G.D.; Chu, P.L. Novel Growth Behaviors of Fiber Bragg Gratings in Polymer Optical Fiber under UV Irradiation with Low Power. IEEE Photonics Technol. Lett. 2004, 16, 159–161. [Google Scholar] [CrossRef]
- Rajan, G.; Yusof, M.; Noor, M.; Lovell, N.H.; Ambikaizrajah, E.; Farrell, G.; Peng, G. Polymer micro-fiber Bragg grating. Opt. Lett. 2013, 38, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Sáez-Rodríguez, D.; Nielsen, K.; Rasmussen, H.K.; Bang, O.; Webb, D.J. Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core. Opt. Lett. 2013, 38, 3769. [Google Scholar] [CrossRef]
- Bundalo, I.-L.; Nielsen, K.; Markos, C.; Bang, O. Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes. Opt. Express 2014, 22, 5270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowal, D.; Statkiewicz-Barabach, G. Microstructured polymer optical fiber for long period gratings fabrication using an ultraviolet laser beam. Opt. Lett. 2014, 39, 2242–2245. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.; Bilro, L.; Nogueira, R. Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds. Opt. Express 2015, 23, 10181. [Google Scholar] [CrossRef] [PubMed]
- Min, R.; Ortega, B.; Nielsen, K.; Bang, O.; Marques, C. Bragg Grating Inscription With Low Pulse Energy in Doped Microstructured Polymer Optical Fibers. IEEE Sens. Lett. 2018, 2, 2–5. [Google Scholar] [CrossRef]
- Min, R.; Ortega, B.; Hu, X.; Broadway, C.; Caucheteur, C.; Pun, C.F.J.; Tam, H.Y.; Antunes, P.; Marques, C. Bragg gratings inscription in TS-doped PMMA POF by using 248-nm KrF pulses. IEEE Photonics Technol. Lett. 2018, 30, 1609–1612. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Q.; Liu, H.; Peng, G.-D. Gratings fabrication in benzildimethylketal doped photosensitive polymer optical fibers using 355 nm nanosecond pulsed laser. Opt. Lett. 2010, 35, 751–753. [Google Scholar] [CrossRef]
- Peng, G.D.; Xiong, Z.; Chu, P.L. Photosensitivity and gratings in dye-doped polymer optical fibers. Opt. Fiber Technol. 1999, 5, 242–251. [Google Scholar] [CrossRef]
- Hu, X.; Woyessa, G.; Kinet, D.; Janting, J.; Nielsen, K.; Bang, O.; Caucheteur, C. BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription. Opt. Lett. 2017, 42, 2209. [Google Scholar] [CrossRef] [PubMed]
- Bonefacino, J.; Tam, H.-Y.; Glen, T.S.; Cheng, X.; Pun, C.-F.J.; Wang, J.; Lee, P.-H.; Tse, M.-L.V.; Boles, S.T. Ultra-fast polymer optical fibre Bragg grating inscription for medical devices. Light Sci. Appl. 2018, 7, 17161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, L.; Min, R.; Hu, X.; Caucheteur, C.; Bang, O.; Ortega, B.; Marques, C.; Antunes, P.; Pinto, J.L. Polymer optical fiber Bragg grating inscription with a single Nd:YAG laser pulse. Opt. Express 2018, 26, 18096. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.A.F.; Min, R.; Leal, A.; Antunes, P.; Fasano, A.; Woyessa, G.; Nielsen, K.; Rasmussen, H.K.; Ortega, B.; Bang, O. Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser. Opt. Express 2018, 26, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Ortega, B.; Min, R.; Sáez-Rodríguez, D.; Mi, Y.; Nielsen, K.; Bang, O. Bandpass transmission filters based on phase shifted fiber Bragg gratings in microstructured polymer optical fibers. Proc. SPIE 2017, 10232, 1023209. [Google Scholar] [Green Version]
- Min, R.; Marques, C.; Bang, O.; Ortega, B. Moiré phase-shifted fiber Bragg gratings in polymer optical fibers. Opt. Fiber Technol. 2018, 41, 78–81. [Google Scholar] [CrossRef]
- Pereira, L.M.; Pospori, A.; Antunes, P.; Domingues, M.F.; Marques, S.; Bang, O.; Webb, D.J.; Marques, C.A.F. Phase-Shifted Bragg Grating Inscription in PMMA Microstructured POF Using 248-nm UV Radiation. J. Lightwave Technol. 2017, 35, 5176–5184. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Liu, H.; Peng, G.; Whitbread, T.W. Tunable dispersion using linearly chirped polymer optical fiber Bragg gratings with fixed center wavelength. IEEE Photonics Technol. Lett. 2005, 17, 411–413. [Google Scholar]
- Min, R.; Ortega, B.; Marques, C. Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask. Opt. Express 2018, 26, 4411–4420. [Google Scholar] [CrossRef] [PubMed]
- Min, R.; Ortega, B.; Marques, C. Tunable chirped fiber bragg gratings in mPOF. In Proceedings of the Bragg Gratings, Photosensitivity and Poling in Glass Waveguides and Materials 2018, Zurich, Switzerland, 2–5 July 2018. Volume Part F98-B. [Google Scholar]
- Min, R.; Ortega, B.; Broadway, C.; Caucheteur, C.; Woyessa, G.; Bang, O.; Antunes, P.; Marques, C. Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratings. Opt. Express 2018, 26, 34655. [Google Scholar] [CrossRef] [PubMed]
- Lwin, R.; Argyros, A.; Leon-Saval, S.G.; Large, M.C.J. Strain sensing using long period gratings in microstructured polymer optical fibres. Proc. SPIE 2011, 7753, 775396. [Google Scholar]
- Min, R.; Marques, C.; Nielsen, K.; Bang, O.; Ortega, B. Fast Inscription of Long Period Gratings in Microstructured Polymer Optical Fibers. IEEE Sens. J. 2018, 18, 1919–1923. [Google Scholar] [CrossRef]
- Statkiewicz-barabach, G.; Kowal, D.; Szczurowski, M.K.; Mergo, P.; Urbanczyk, W. Hydrostatic Pressure and Strain Sensitivity of Long Period Grating Fabricated in Polymer Microstructured Fiber. IEEE Photonics Technol. Lett. 2013, 25, 496–499. [Google Scholar] [CrossRef]
- Min, R.; Korganbayev, S.; Moladi, C.; Broadway, C.; Hu, X.; Caucheteur, C.; Bang, O.; Antunes, P.; Tosi, D.; Marques, C.; et al. Largely tunable dispersion chirped polymer FBG. Opt. Lett. 2018, 43, 5106–5109. [Google Scholar] [CrossRef] [PubMed]
- Min, R.; Ortega, B.; Broadway, C.; Hu, X.; Caucheteur, C.; Bang, O.; Antunes, P.; Marques, C. Microstructured PMMA POF chirped Bragg gratings for strain sensing. Opt. Fiber Technol. 2018, 45, 330–335. [Google Scholar] [CrossRef]
- Tosi, D.; Schena, E.; Molardi, C.; Korganbayev, S. Fiber optic sensors for sub-centimeter spatially resolved measurements: Review and biomedical applications. Opt. Fiber Technol. 2018, 43, 6–19. [Google Scholar] [CrossRef]
- Korganbayev, S.; Min, R.; Jelbuldina, M.; Hu, X.; Caucheteur, C.; Bang, O.; Ortega, B.; Marques, C.; Tosi, D. Thermal Profile Detection Through High-Sensitivity Fiber Optic Chirped Bragg Grating on Microstructured PMMA Fiber. J. Lightwave Technol. 2018, 36, 4723–4729. [Google Scholar] [CrossRef]
- Vilarinho, D.; Theodosiou, A.; Leitão, C.; Leal-Junior, A.G.; de Fátima Domingues, M.; Kalli, K.; André, P.; Antunes, P.; Marques, C. POFBG-embedded cork insole for plantar pressure monitoring. Sensors 2017, 17, 2924. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Mégret, P.; Caucheteur, C. Surface plasmon excitation at near-infrared wavelengths in polymer optical fibers. Opt. Lett. 2015, 40, 3998. [Google Scholar] [CrossRef] [PubMed]
- Broadway, C.; Kalli, K.; Theodosiou, A.; Zubel, M.; Sugden, K.; Megret, P.; Caucheteur, C. L-band CYTOP Bragg gratings for ultrasound sensing. Proc. SPIE 2018, 10681, 1068109. [Google Scholar]
Fiber Type | Transversal Section | Diameter | Main Feature |
---|---|---|---|
Small-diameter step-index (SI) POF | 100~200 μm | Easy coupling Potential single-mode performance | |
Microstructure POF | 100~250 μm | Easy to obtain single-mode performance Can be made with a single material | |
Commercial grade-index (GI) POF | 490 μm | Low loss Large bandwidth | |
Commercial large-diameter polymethyl methacrylate (PMMA) POF | 1 mm | Low price Easy handling |
POFs | Inscription Time (seconds) | FWHM (nm) | Reflection Band (dB) | Optimal Energy (mJ) |
---|---|---|---|---|
PMMA mPOF | 25 | 0.4 | 32 | 6.0 |
Topas 8007 mPOF | 25 | 0.6 | 31 | 5.5 |
Topas 5013 mPOF | 20 | 0.6 | 23 | 6.0 |
Topas step-index POF | 11 | 0.8 | 31 | 5.0 |
Zeonex 480R mPOF | 15 | 0.7 | 28 | 3.5 |
Polycarbonate mPOF | 14 | 0.6 | 23 | 3.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, R.; Ortega, B.; Marques, C. Latest Achievements in Polymer Optical Fiber Gratings: Fabrication and Applications. Photonics 2019, 6, 36. https://doi.org/10.3390/photonics6020036
Min R, Ortega B, Marques C. Latest Achievements in Polymer Optical Fiber Gratings: Fabrication and Applications. Photonics. 2019; 6(2):36. https://doi.org/10.3390/photonics6020036
Chicago/Turabian StyleMin, Rui, Beatriz Ortega, and Carlos Marques. 2019. "Latest Achievements in Polymer Optical Fiber Gratings: Fabrication and Applications" Photonics 6, no. 2: 36. https://doi.org/10.3390/photonics6020036
APA StyleMin, R., Ortega, B., & Marques, C. (2019). Latest Achievements in Polymer Optical Fiber Gratings: Fabrication and Applications. Photonics, 6(2), 36. https://doi.org/10.3390/photonics6020036