Extreme Ultraviolet Stokesmeter for Pulsed Magneto-Optics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Background
2.2. Experimental Setup
2.3. Stokesmeter Pattern Simulation
- (a)
- The polarization is linear along the horizontal axis, i.e., the pulse energy is 100-times higher for the horizontal axis than for the vertical one. Two full-amplitude spots are observed at the CCD. They correspond to the projections of the polarizer mirrors oriented vertically (M1) and at 45 (M3). The secondary mirrors produce a suppression of the total reflectivity at the X-ray CCD of 50%. The relative intensity is marked in each spot.
- (b)
- The polarization is linear along the vertical axis, i.e., the pulse energy is 100-times higher for the vertical axis than for the horizontal one. Two full-amplitude spots are observed at the CCD. They correspond to the projections of the polarizer mirrors oriented horizontally (M2) and at 45 (M3).
- (c)
- The polarization is an elliptical axis, i.e., the ratio of the pulse energy of to is 4 to 3. Three partial-amplitude spots are observed at the CCD. They correspond to the projections of the polarizer mirrors, M1, M2 and M3. For a phase difference /2 <δ< π/2, the ellipse of polarization is oriented toward the right.
- (d)
- The polarization is elliptical, i.e., the ratio of the pulse energy of to is 1 to 2. Three partial-amplitude spots are observed at the CCD. They correspond to the projections of the polarizer mirrors, M1, M2 and M3. For a phase difference π/2 <δ< /2, the ellipse of polarization is oriented to the left.
- (e)
- The polarization is circular, i.e., the pulse energy of is equal to the pulse energy of . Three partial-amplitude spots are observed at the CCD. They have equal intensities. They correspond to the projections of the polarizer mirrors, M1, M2 and M3. The phase difference is π/2.
3. Results and Discussion
Grating | Period (nm) | Tip-to-tip Gap (nm) | Calculated efficiency(%) |
---|---|---|---|
A | 290 | 5 | 4.8 |
B | 290 | 25 | 3.9 |
C | 290 | 50 | 0.1 |
D | 330 | 5 | 4.7 |
E | 330 | 25 | 4.1 |
F | 330 | 50 | 0.7 |
G | 370 | 5 | 4.8 |
H | 370 | 25 | 4.5 |
I | 370 | 50 | 1.5 |
3.1. Efficiency of the Stokesmeter
3.2. Simultaneous Stokes Parameters for EUV Pulses
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Armelao, L.; Bleiner, D.; di Noto, V.; Gross, S.; Sada, C.; Schubert, U.; Tondello, E.; Vonmont, H.; Zattin, A. Ion-, photoelectron- and laser-assisted analytical investigation of nano-structured mixed HfO2-SiO2 and ZrO 2-SiO2 thin films. Appl. Surface Sci. 2005, 249, 277–294. [Google Scholar] [CrossRef]
- Len, P. M.; T.Gog, D.; Novikov, R.A.; Eisengower, G.; Materlik, C.S. Fadley, Multiple energy X-ray holography: Incident-radiation polarization effects. Phys. Rev. B 1997, 56, 1529–1539. [Google Scholar] [CrossRef]
- Van der Laan, G. Applications of soft X-ray magnetic dichroism. J. Phys. Conf. Ser. 2013, 430, 012127. [Google Scholar] [CrossRef]
- Lopez-Flores, V.; Arabski, J.; Stamm, C.; Halté, V.; Pontius, N.; Beaurepaire, E.; Stamm, C. Time-resolved X-ray magnetic circular dichroism study of ultrafast demagnetization ferromagnetic film excited by circularly polarized laser pulse. Phys. Rev. B 2012, 86, 014424. [Google Scholar]
- Allwood, D.A.; Xiong, G.; Cooke, M.D.; Cowburn, R.P. Magneto-optical Kerr effect analysis of magnetic nanostructure. J. Phys. D: Appl. Phys. 2003, 36, 2175–2182. [Google Scholar]
- Dae-Eun, J.; Ki-Suk, L.; Sang-Koog, K. X-ray Magneto-Optical Kerr Effect Based on Circular Polarization Eigenmode. J. Korean Phys. Soc. 2005, 46, 1180–1184. [Google Scholar]
- Heigl, F.; Krupin, O.W.; Vollmer, A.; Starke, K. Soft X-ray magneto-optics at rare-earth 4dâĹŠ-4f thresholds. Appl. Phys. A 2001, 86, 3415–3418. [Google Scholar]
- Starke, K.; Heigl, F.; Vollmer, F.; Weiss, M.; Reichartdt, G.; Kainfle, G. X-ray magneto-optics in lanthanides. Phys. Rev. Lett. 2001, 86, 3415. [Google Scholar] [CrossRef] [PubMed]
- Polisetty, S.; Zhou, J.; Karthik, J.; Damodaran, A.R.; Chen, D.; Scholl, A.; Martin, L.W.; Holcomb, M. X-ray linear dichroism dependence on ferroelectric polarization. J. Phys. Condens. Matter 2012, 24, 245902. [Google Scholar] [CrossRef] [PubMed]
- Tesch, M.F.; Gilbert, M.C.; Mertins, H.-C.; Bürgler, D.E.; Berges, U.; Schneider, C.M. X-ray magneto-optical polarization spectroscopy: An analysis from the visible region to the X-ray regime. Appl. Opt. 2013, 52, 4294–4310. [Google Scholar] [CrossRef] [PubMed]
- Eisebitt, S.; Luening, J.; Schlotter, W.F.; Loergen, M.; Hellwig, O.; Eberhardt, W.; Stöhr, J. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 2004, 43, 885–888. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.; Huang, X.; Krupin, O.; Seu, K.A.; Parks, D.; Kevan, S.; Lima, E.; Kisslinger, K.; McNulty, I.; Gambino, R.; et al. X-Ray Diffraction Microscopy of Magnetic Structures. Phys. Rev. Lett. 2011, 107, 033904. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, M.; Popescu, H.; Jaouen, N.; Tortarolo, M.; Fortuna, F.; Delaunay, R.; Spezzani, C. Magnetic imaging by Fourier transform holography using linearly polarized X-rays. Opt. Express 2012, 20, 9769–9776. [Google Scholar] [CrossRef] [PubMed]
- Pfau, B.; Günther, C.M.; Könnecke, R.; Guehrs, E.; Hellwig, O.; Schlotter, W. F.; Eisebitt, S. Magnetic imaging at linearly polarized X-ray sources. Opt. Express 2010, 18, 13608–13615. [Google Scholar] [CrossRef] [PubMed]
- Bahrdt, J.; Frentrup, W.; Gaupp, A.; Scheer, M.; Gudat, W.; Ingold, G.; Sasaki, S. Elliptically polarizing insertion devices at BESSY IIt. In Proceedings of the 7th International Conference on Synchrotron Radiation Instrumentation, Berlin, Germany, 21–25 August 2000; Volume 467–468, pp. 21–29.
- Dhez, P. Polarizers and polarimeters in the xuv range. Nucl. Instrum. Methods A 1987, 261, 66–71. [Google Scholar] [CrossRef]
- Kortright, J.B.; Rice, M.; Franck, K.D. Tunable multilayer EUV/soft X-ray polarimeter. Rev. Sci. Instrum. 1995, 66, 1567. [Google Scholar] [CrossRef]
- Schäfer, F. Multilayers for the EUV/soft X-ray range. Phys. B 2000, 283, 119–124. [Google Scholar] [CrossRef]
- Schäfer, F.; Mertins, H.C.; Andreas Gaupp, W.; Gudat, M.; Mertin, I.; Packe, F.; Schmolla, S.; di Fonzo, G.; Soullie, W.; Richard Walker, J.; et al. Soft-x-ray polarimeter with multilayer optics: Complete analysis of the polarization state of light. Appl. Opt. 1999, 38, 4074–4088. [Google Scholar] [CrossRef]
- Rabinovitch, K.; Canfield, L.R.; Madden, R.P. A Method for Measuring Polarization in the Vacuum Ultraviolet. Appl. Opt. 1965, 4, 1005–1010. [Google Scholar] [CrossRef]
- Johnson, R.L.; Barth, J.; Cardona, M.; Fuchs, D.; Bradshaw, A.M. Spectroscopic ellipsometry with synchrotron radiation. Rev. Sci. Instrum. 1989, 60, 2209–2212. [Google Scholar] [CrossRef]
- Uschakow, S.; Gaupp, A.; MacDonald, M.; Schäfer, F. EUV Ellipsometry on Mo/Si Multilayers. In Procedding of the 11th International Conference on Synchrotron Radiation Instrumentation, SRI 2012, Lyon, France, 9–13 July 2012; Volume 425, p. AN 152011.
- Träger, F. Handbook of Lasers and Optics; Springer: Berlin, Germany, 2012; Chapter 3; pp. 108–110. [Google Scholar]
- XIL-II (X09LB): Extreme Ultraviolet Interference Lithography. Available online: http://www.psi.ch/sls/xil/xil (accessed on 15 February 2015).
- Electron Beam Lithography. Available online: http://www.psi.ch/lmn/electron-beam-lithography (accessed on 15 February 2015).
- Aquila, A.; Bleiner, D.; Balmer, J.; Bajt, S. Polarization measurement of plasma excited X-ray lasers. Proc. SPIE 2011, 8140, 81400Z-2. [Google Scholar]
- Bleiner, D.; Yulin, S.; Martynczuk, J.; Ruiz-Lopez, M.; Arbelo, Y.; Balmer, J.E.; Günther, D. Actinic damage of Y/Mo multilayer optics in a table-top plasma-driven X-ray laser. Appl. Opt. 2014, 52, 4894–4902. [Google Scholar] [CrossRef] [PubMed]
- Zang, H.P.; Wang, C.K.; Gao, Y.L.; Zhou, W.M.; Kuang, L.Y.; Wei, L.; Fan, W.; Zhang, W.H.; Zhao, Z.Q.; Cao, L.F.; et al. Elimination of higher-order diffraction using zigzag transmission grating in soft X-ray region. App. Phys. Lett. 2012, 100, AN 111904. [Google Scholar] [CrossRef]
- Bleiner, D.; Arbelo-Pena, Y.; Masoudnia, L.; Ruiz-Lopez, M. Table-top X-ray lasers using a plasma gain-medium: Limits and potentials. Phys. Scripta 2014, T162, 014050. [Google Scholar] [CrossRef]
- Attwood, D. Soft X-Ray and Extreme Ultraviolet Radiation: Principles and Applications; Cambridge University: Cambridge, UK, 1999; Chapter 3; pp. 69–78. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Lopez, M.; Barbato, F.; Ekinci, Y.; Bleiner, D. Extreme Ultraviolet Stokesmeter for Pulsed Magneto-Optics. Photonics 2015, 2, 241-255. https://doi.org/10.3390/photonics2010241
Ruiz-Lopez M, Barbato F, Ekinci Y, Bleiner D. Extreme Ultraviolet Stokesmeter for Pulsed Magneto-Optics. Photonics. 2015; 2(1):241-255. https://doi.org/10.3390/photonics2010241
Chicago/Turabian StyleRuiz-Lopez, Mabel, Francesco Barbato, Yasin Ekinci, and Davide Bleiner. 2015. "Extreme Ultraviolet Stokesmeter for Pulsed Magneto-Optics" Photonics 2, no. 1: 241-255. https://doi.org/10.3390/photonics2010241
APA StyleRuiz-Lopez, M., Barbato, F., Ekinci, Y., & Bleiner, D. (2015). Extreme Ultraviolet Stokesmeter for Pulsed Magneto-Optics. Photonics, 2(1), 241-255. https://doi.org/10.3390/photonics2010241