Charge-Asymmetric Dissociation of Iodine Bromide in an Intense Femtosecond Laser Field
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Overview
2.2. Molecular Beam Preparation
2.3. Laser System and Interaction
2.4. Ion Velocity Imaging Setup
2.5. Data Acquisition
3. Results
3.1. Time-of-Flight Mass Spectrum
3.2. Velocity Map Imaging and Kenitic Energy of Fragment Ions
4. Discussion
4.1. Assignment of Dissocaitiove Ionization and Coulomb Explosion Channels
4.2. Origin of Charge-Symmetric Dissociation: Role of Charge-Resonance-Enhanced Ionization
4.3. Origin of Charge-Asymmetric Dissociation: Integrated CREI-COB Model
4.4. Conclusion of Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CAD | Charge asymmetric dissociation |
| CSD | Charge symmetric dissociation |
| CREI | Charge-resonance-enhanced ionization |
| COB | Classical over-the-barrier |
References
- Krause, J.L.; Schafer, K.J.; Kulander, K.C. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 1992, 68, 3535–3538. [Google Scholar] [CrossRef] [PubMed]
- Macklin, J.J.; Kmetec, J.D.; Gordon, C.L. High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 1993, 70, 766–769. [Google Scholar] [CrossRef] [PubMed]
- Becker, W.; Grasbon, F.; Kopold, R.; Milošević, D.B.; Paulus, G.G.; Walther, H. Above-Threshold Ionization: From Classical Features to Quantum Effects. In Advances in Atomic, Molecular, and Optical Physics; Bederson, B., Walther, H., Eds.; Academic Press: Cambridge, MA, USA, 2002; Volume 48, pp. 35–98. [Google Scholar]
- Eberly, J.H.; Javanainen, J.; Rza̧żewski, K. Above-threshold ionization. Phys. Rep. 1991, 204, 331–383. [Google Scholar] [CrossRef]
- Cornaggia, C.; Schmidt, M.; Normand, D. Laser-induced nuclear motions in the Coulomb explosion of C2H2+ ions. Phys. Rev. A At. Mol. Opt. Phys. 1995, 51, 1431–1437. [Google Scholar] [CrossRef]
- Cornaggia, C.; Schmidt, M.; Normand, D. Coulomb explosion of CO2 in an intense femtosecond laser field. J. Phys. B At. Mol. Opt. Phys. 1994, 27, L123. [Google Scholar] [CrossRef]
- Vager, Z.; Naaman, R.; Kanter, E.P. Coulomb explosion imaging of small molecules. Science 1989, 244, 426–431. [Google Scholar] [CrossRef]
- Kling, N.G.; McKenna, J.; Sayler, A.M.; Gaire, B.; Zohrabi, M.; Ablikim, U.; Carnes, K.D.; Ben-Itzhak, I. Charge asymmetric dissociation of a CO+ molecular-ion beam induced by strong laser fields. Phys. Rev. A 2013, 87, 013418. [Google Scholar] [CrossRef]
- Strickland, D.T.; Beaudoin, Y.; Dietrich, P.; Corkum, P.B. Optical studies of inertially confined molecular iodine ions. Phys. Rev. Lett. 1992, 68, 2755–2758. [Google Scholar] [CrossRef]
- Hatherly, P.A.; Stankiewicz, M.; Codling, K.; Frasinski, L.J.; Cross, G.M. The multielectron dissociative ionization of molecular iodine in intense laser fields. J. Phys. B At. Mol. Opt. Phys. 1994, 27, 2993. [Google Scholar] [CrossRef]
- Seideman, T.; Ivanov, M.Y.; Corkum, P.B. Role of electron localization in intense-field molecular ionization. Phys. Rev. Lett. 1995, 75, 2819. [Google Scholar] [CrossRef]
- Torlina, L.; Ivanov, M.; Walters, Z.B.; Smirnova, O. Time-dependent analytical R-matrix approach for strong-field dynamics. II. Many-electron systems. Phys. Rev. A At. Mol. Opt. Phys. 2012, 86, 043409. [Google Scholar] [CrossRef]
- Harumiya, K.; Kono, H.; Fujimura, Y.; Kawata, I.; Bandrauk, A.D. Intense laser-field ionization of H2 enhanced by two-electron dynamics. Phys. Rev. A 2002, 66, 043403. [Google Scholar] [CrossRef]
- Guo, C.; Li, M.; Gibson, G.N. Charge asymmetric dissociation induced by sequential and nonsequential strong field ionization. Phys. Rev. Lett. 1999, 82, 2492. [Google Scholar] [CrossRef]
- Boyer, K.; Luk, T.; Solem, J.; Rhodes, C. Kinetic energy distributions of ionic fragments produced by subpicosecond multiphoton ionization of N2. Phys. Rev. A 1989, 39, 1186. [Google Scholar] [CrossRef]
- Bocharova, I.; Karimi, R.; Penka, E.F.; Brichta, J.-P.; Lassonde, P.; Fu, X.; Kieffer, J.-C.; Bandrauk, A.D.; Litvinyuk, I.; Sanderson, J. Charge resonance enhanced ionization of CO2 probed by laser Coulomb explosion imaging. Phys. Rev. Lett. 2011, 107, 063201. [Google Scholar] [CrossRef]
- Pavičić, D.; Kiess, A.; Hänsch, T.; Figger, H. Intense-Laser-Field Ionization of the Hydrogen Molecular Ions H2+ and D2+ at Critical Internuclear Distances. Phys. Rev. Lett. 2005, 94, 163002. [Google Scholar] [CrossRef]
- Constant, E.; Stapelfeldt, H.; Corkum, P. Observation of enhanced ionization of molecular ions in intense laser fields. Phys. Rev. Lett. 1996, 76, 4140. [Google Scholar] [CrossRef]
- Tagliamonti, V.; Chen, H.; Gibson, G. Multielectron effects in charge asymmetric molecules induced by asymmetric laser fields. Phys. Rev. Lett. 2013, 110, 073002. [Google Scholar] [CrossRef]
- Gibson, G.N.; Li, M.; Guo, C.; Nibarger, J.P. Direct evidence of the generality of charge-asymmetric dissociation of molecular iodine ionized by strong laser fields. Phys. Rev. A 1998, 58, 4723. [Google Scholar] [CrossRef]
- Ohmura, H.; Nakanaga, T.; Tachiya, M. Coherent control of photofragment separation in the dissociative ionization of IBr. Phys. Rev. Lett. 2004, 92, 113002. [Google Scholar] [CrossRef]
- Lu, J.; Shao, F.-W.; Fan, K.-N. Coherent control of the photodissociation of CH3I and IBr. Chem. Phys. Lett. 2000, 329, 461–468. [Google Scholar] [CrossRef]
- Ohmura, H.; Nakanaga, T.; Arakawa, H.; Tachiya, M. The interference effects induced by two-color excitation in the photodissociation of IBr. Chem. Phys. Lett. 2002, 363, 559–566. [Google Scholar] [CrossRef]
- Hussain, A.N.; Roberts, G. Wave packet dynamics of IBr predissociation. J. Chem. Phys. 1999, 110, 2474–2488. [Google Scholar] [CrossRef]
- Townsend, D.; Minitti, M.P.; Suits, A.G. Direct current slice imaging. Rev. Sci. Instrum. 2003, 74, 2530–2539. [Google Scholar] [CrossRef]
- Eppink, A.T.; Parker, D.H. Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 1997, 68, 3477–3484. [Google Scholar] [CrossRef]
- Zuo, T.; Bandrauk, A.D. Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers. Phys. Rev. A 1995, 52, R2511. [Google Scholar] [CrossRef]
- Ryufuku, H.; Sasaki, K.; Watanabe, T. Oscillatory behavior of charge transfer cross sections as a function of the charge of projectiles in low-energy collisions. Phys. Rev. A 1980, 21, 745–750. [Google Scholar] [CrossRef]
- Morse, M.D. Supersonic beam sources. In Experimental Methods in the Physical Sciences; Elsevier: Amsterdam, The Netherlands, 1996; Volume 29, pp. 21–47. [Google Scholar]
- Zhang, J.; Li, Z.; Yang, Y. Multi-ionization of the Cl2 molecule in the near-infrared femtosecond laser field. RSC Adv. 2020, 10, 332–337. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Li, Z.; Sun, H.; Zhang, S.; Sun, Z. Channel-resolved multiorbital double ionization of molecular Cl2 in an intense femtosecond laser field. Phys. Rev. A 2018, 98, 043402. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Li, Z.; Sun, Z. Dissociative ionization of CH2Br2 in 800 and 400 nm femtosecond laser fields. Chem. Phys. Lett. 2017, 685, 151–156. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. 2024. NIST Atomic Spectra Database (Version 5.12). Available online: https://physics.nist.gov/asd (accessed on 26 January 2026).
- National Institute of Standards and Technology, Gaithersburg, MD. Available online: https://www.nist.gov/pml/atomic-spectra-database (accessed on 26 January 2026).




| Channel | Dissociation Pathway | KE_Ip+ (eV) | KE_Brp+ (eV) | KERs (eV) | Yield ** (arb) |
|---|---|---|---|---|---|
| (3, 3) | IBr6+ → I3+ + Br3+ | 15.6 ± 0.1 | 22.1 ± 0.1 | 37.7 ± 0.2 | 0.27 |
| (4, 2) | IBr6+ → I4+ + Br2+ | 12.6 ± 0.5 | 21.1 ± 0.6 | 33.7± 0.8 | 0.00 |
| (2, 3) | IBr5+ → I2+ + Br3+ | 11.8 ± 0.1 | 19.3 ± 0.1 | 31.0 ± 0.2 | 0.11 |
| (3, 2) | IBr5+ → I3+ + Br2+ | 10.4 ± 0.1 | 14.7 ± 0.1 | 25.0 ± 0.2 | 0.46 |
| (2, 2) | IBr4+ → I2+ + Br2+ | 7.8 ± 0.1 | 10.6 ± 0.1 | 18.4 ± 0.2 | 0.73 |
| (3, 1) | IBr4+ → I3+ + Br+ | 5.1 ± 0.5 | 7.7 ± 0.6 | 12.8 ± 1.1 | 0.06 |
| (1, 2) | IBr3+ → I+ + Br2+ | 4.5 ± 0.1 | 6.7 ± 0.1 | 11.2 ± 0.2 | 0.22 |
| (2, 1) | IBr3+ → I2+ + Br+ | 3.7± 0.1 | 6.0 ± 0.1 | 9.6 ± 0.2 | 1.00 |
| (1, 1) | IBr2+ → I+ + Br+ | 2.2 ± 0.1 | 3.3 ± 0.1 | 5.5 ± 0.2 | 0.47 |
| (2, 0) | IBr2+ → I2+ + Br | 1.1 ± 0.1 | / | 2.7 * | |
| (0, 1) | IBr+ → I + Br+ | / | 0.9 ± 0.1 | 2.2 * | |
| (1, 0) | IBr+ → I+ + Br | 0.6 ± 0.1 | / | 1.5 * |
| Molecular Ions | CSD Channels | KERs (eV) | Rc (Å) |
|---|---|---|---|
| IBr | / | / | 2.47 ± 0.05 * |
| IBr2+ | (1, 1) | 5.5 ± 0.2 | 2.62 ± 0.10 |
| IBr3+ | (2, 1) | 9.6 ± 0.2 | 3.00 ± 0.06 |
| IBr4+ | (2, 2) | 18.4 ± 0.2 | 3.13 ± 0.03 |
| IBr5+ | (3, 2) | 25.0 ± 0.2 | 3.46 ± 0.03 |
| IBr6+ | (3, 3) | 37.7 ± 0.2 | 3.44 ± 0.02 |
| Molecular Ions | CAD Channels | KERs (eV) | Rc (Å) |
|---|---|---|---|
| IBr3+ | (1, 2) | 11.2 ± 0.2 | 2.57 ± 0.05 |
| IBr4+ | (3, 1) | 12.8 ± 1.1 | 3.38 ± 0.29 |
| IBr5+ | (2, 3) | 31.0 ± 0.2 | 2.79 ± 0.02 |
| IBr6+ | (4, 2) | 33.7± 0.8 | 3.42 ± 0.08 |
| Molecular Ion | Charge Transfer Pathways | Rc (Å) | Rcrit (Å) |
|---|---|---|---|
| IBr2+ | (1,1)→(2,0) | 2.62 ± 0.10 | 3.63 |
| IBr3+ | (2,1)→(1,2) | 2.99 ± 0.01 | 4.00 |
| IBr4+ | (2,2)→(3,1) | 3.13 ± 0.03 | 3.85 |
| IBr5+ | (3,2)→(2,3) | 3.46 ± 0.03 | 3.72 |
| IBr6+ | (3,3)→(4,2) | 3.44 ± 0.02 | 3.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, B.; Li, Z. Charge-Asymmetric Dissociation of Iodine Bromide in an Intense Femtosecond Laser Field. Photonics 2026, 13, 160. https://doi.org/10.3390/photonics13020160
Liu B, Li Z. Charge-Asymmetric Dissociation of Iodine Bromide in an Intense Femtosecond Laser Field. Photonics. 2026; 13(2):160. https://doi.org/10.3390/photonics13020160
Chicago/Turabian StyleLiu, Botong, and Zhipeng Li. 2026. "Charge-Asymmetric Dissociation of Iodine Bromide in an Intense Femtosecond Laser Field" Photonics 13, no. 2: 160. https://doi.org/10.3390/photonics13020160
APA StyleLiu, B., & Li, Z. (2026). Charge-Asymmetric Dissociation of Iodine Bromide in an Intense Femtosecond Laser Field. Photonics, 13(2), 160. https://doi.org/10.3390/photonics13020160
