Theoretical Analysis of Vernier-Effect-Induced Sensitivity Enhancement of Dual Fiber Fabry-Pérot Cavities in OFDRs
Abstract
1. Introduction
2. Theoretical Analysis
2.1. Dual Fabry-Pérot Cavities Demodulated by OFDR Systems
2.2. The Analysis of the Vernier Effect in the OFDR System
2.2.1. Cascaded Dual FP Cavities
2.2.2. Parallel Dual FP Cavities
3. Simulation Results
3.1. Cascaded Dual FP Cavities Demodulated by the OFDR
3.1.1. OFDR Demodulation Systems
3.1.2. Vernier Effect Verification
3.2. Parallel Dual FP Cavities Demodulated by the OFDR
3.2.1. OFDR Demodulation Systems
3.2.2. Vernier Effect Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, Z.; Guo, H.; Liu, K.; Hua, P.; Zhang, T.; Li, S.; Liu, J.; Jiang, J.; Liu, T. Advances in Distributed Optical Fiber Sensors Based on Optical Frequency-Domain Reflectometry: A Review. IEEE Sens. J. 2023, 23, 26925–26941. [Google Scholar] [CrossRef]
- Cheng, X.; Kong, L.; Liu, Y.; He, X.; Xie, Q.; Peng, X.; Zhou, Y.; He, Y.; Wan, B.; Liu, H.; et al. Fiber-Optic Sensors for Online Detection of Corrosion Degree of Stone Artifacts. IEEE Sens. J. 2024, 24, 4449–4457. [Google Scholar] [CrossRef]
- Huang, C.; Dong, Y.; Huang, Y.; Wang, W.; Wang, W.; Chen, M.; Wen, J.; Zhang, X.; Luo, Y.; Wang, T. Compact and High-Sensitivity Bismuth-Doped Silica Optical Fiber Weak Magnetic Sensor. IEEE Sens. J. 2025, 25, 6326–6335. [Google Scholar] [CrossRef]
- Li, X.; Geng, F.; Li, S.; Liu, X.; Duan, T.; Wang, R.; Chen, F.; Qiao, X. Sensitivity Enhancement of Fiber-Optic Accelerometers Based on the Weak Fiber Bragg Grating Array by Inscribing in Thin-Cladding Fiber. J. Light. Technol. 2025, 43, 983–989. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Y.; Okatani, T.; Inomata, N.; Kanamori, Y. Tunable Fabry-Perot interferometer operated in the terahertz range based on an effective refractive index control using pitch-variable subwavelength gratings. Opt. Lett. 2024, 49, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Huang, T.; Zheng, Y.; Wang, N.; Han, X.; Tan, Y.; Zhou, Z. High Temperature-Pressure Metalized Optical Fiber Dual FP Sensor With Welding Encapsulation. IEEE Sens. J. 2024, 24, 25724–25733. [Google Scholar] [CrossRef]
- Aref, S.H.; Latifi, H.; Zibaii, M.I.; Afshari, M. Fiber optic Fabry–Perot pressure sensor with low sensitivity to temperature changes for downhole application. Opt. Commun. 2007, 269, 322–330. [Google Scholar] [CrossRef]
- Shen, Y.; Jiang, Y.; Xie, S.; Hu, C. Multiorder Cavity Length Estimation Algorithm of Low-Fineness Sapphire Fabry–Perot Interferometers for Strain Measurement Under Ultrahigh Temperature. IEEE Sens. J. 2025, 25, 16873–16880. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, P.; Ni, W.; Xiong, W.; Liu, D.; Zhang, J. Gold-Diaphragm Based Fabry-Perot Ultrasonic Sensor for Partial Discharge Detection and Localization. IEEE Photon. J. 2020, 12, 6801612. [Google Scholar] [CrossRef]
- Wang, W. Fabry-Perot Interference Fiber Acoustic Wave Sensor Based on Laser Welding All-Silica Glass. Materials 2022, 15, 2484. [Google Scholar] [CrossRef]
- Wei, H.; Wu, Z.; Sun, K.; Zhang, H.; Wang, C.; Wang, K.; Yang, T.; Pang, F.; Zhang, X.; Wang, T.; et al. Two-photon 3D printed spring-based Fabry–Pérot cavity resonator for acoustic wave detection and imaging. Photon. Res. 2023, 11, 780–786. [Google Scholar] [CrossRef]
- Zhen, W.; Ren, Z.-C.; Wang, X.-L.; Ding, J.; Wang, H.-T. Polarization structure transition of C-point singularities upon reflection. Sci. China Phys. Mech. Astron. 2025, 68, 244211–244221. [Google Scholar] [CrossRef]
- Xu, J.; Huang, K.; Zheng, J.; Li, J.; Pei, L.; You, H.; Ning, T. Sensitivity Enhanced Magnetic Field Sensor Based on Hollow Core Fiber Fabry-Perot Interferometer and Vernier Effect. IEEE Photon. J. 2022, 14, 1–5. [Google Scholar] [CrossRef]
- Wei, T.; Zhang, Y.; Zhang, L.; Tian, Z.; Nie, Z.; Yao, Y.; Wang, M. Research on Ultra-High Sensitivity Fiber-Optic Cascaded Fabry-Perot Resonator Optical Sensor Based on the Comb-Spectrum Vernier Effect. J. Light. Technol. 2024, 42, 6182–6187. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, Y.; Miao, Y.; Chen, X.; Han, Z.; Yao, J. Low-Concentration Bilirubin Detection Based on Photothermal Effect With Parallel Vernier Effect of Optical Fiber Fabry–Pérot Cavity. IEEE Sens. J. 2024, 24, 34569–34575. [Google Scholar] [CrossRef]
- Zhang, T.; Han, Q.; Liang, Z.; Jiang, J.; Cheng, Z. A Fabry-Perot Sensor with Cascaded Polymer Films Based on Vernier Effect for Simultaneous Measurement of Relative Humidity and Temperature. Sensors 2023, 23, 2800. [Google Scholar] [CrossRef]
- Li, X.; Li, F.; Zhou, X.; Zhang, Y.; Nguyen, L.V.; Warren-Smith, S.C.; Zhao, Y. Optical Fiber DNA Biosensor With Temperature Monitoring Based on Double Microcavities Fabry–Perot Interference and Vernier Combined Effect. IEEE Trans. Instrum. Meas. 2023, 72, 7001208. [Google Scholar] [CrossRef]
- Wang, Z.; Bao, W.; Yang, P.; Jiang, S.; Zhang, Y.; Zhu, X.; Wei, W.; Peng, B. Highly Sensitive Strain Sensor Based on the Vernier Effect With High Extinction Ratio and Low-Temperature Cross-Sensitivity by Compact Double FPI. IEEE Sens. J. 2024, 24, 7896–7904. [Google Scholar] [CrossRef]
- Duan, S.; Pu, S.; Lin, X.; Liu, W.; Hao, Z.; Zhang, C.; Fu, J.; Han, S. Enhanced sensitivity of temperature and magnetic field sensor based on FPIs with Vernier effect. Opt. Express 2024, 32, 275–286. [Google Scholar] [CrossRef]
- Qiang, C.; Chu, C.; Wang, Y.; Yang, X.; Yang, X.; Hou, Y.; Wen, X.; Teng, P.; Zhang, B.; Sivanathan, S.; et al. Highly Sensitive Temperature Sensor Based on a UV Glue-Filled Fabry–Perot Interferometer Utilizing the Vernier Effect. Photonics 2025, 12, 256. [Google Scholar] [CrossRef]
- Song, J.; Li, W.; Lu, P.; Xu, Y.; Chen, L.; Bao, X. Long-Range High Spatial Resolution Distributed Temperature and Strain Sensing Based on Optical Frequency-Domain Reflectometry. IEEE Photon. J. 2014, 6, 6801408. [Google Scholar] [CrossRef]
- Ding, Z.; Sun, K.; Liu, K.; Jiang, J.; Yang, D.; Yu, Z.; Li, J.; Liu, T. Distributed refractive index sensing based on tapered fibers in optical frequency domain reflectometry. Opt. Express 2018, 26, 13042–13054. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, X.; He, Z. Long-Range Distributed Static Strain Sensing With $< $100 Nano-Strain Resolution Realized Using OFDR. J. Light. Technol. 2019, 37, 4590–4596. [Google Scholar] [CrossRef]
- Qu, S.; Qin, Z.; Xu, Y.; Liu, Z.; Cong, Z.; Wang, H.; Li, Z. Distributed sparse signal sensing based on compressive sensing OFDR. Opt. Lett. 2020, 45, 3288–3291. [Google Scholar] [CrossRef]
- Esquivel-Hernandez, J.; Martinez-Manuel, R. Resolution Improvement in a Multi-Point Fiber Refractometer Based on Coherent-OFDR. IEEE Photon. Technol. Lett. 2020, 32, 530–533. [Google Scholar] [CrossRef]
- Lou, X.; Feng, Y.; Chen, C.; Dong, Y. Multi-point spectroscopic gas sensing based on coherent FMCW interferometry. Opt. Express 2020, 28, 9014–9026. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.; Feng, Y.; Yang, S.; Dong, Y. Ultra-wide-dynamic-range gas sensing by optical pathlength multiplexed absorption spectroscopy. Photon. Res. 2021, 9, 193–201. [Google Scholar] [CrossRef]
- Feng, W.; Wang, M.; Jia, H.; Xie, K.; Tu, G. High Precision Phase-OFDR Scheme Based on Fading Noise Suppression. J. Light. Technol. 2022, 40, 900–908. [Google Scholar] [CrossRef]
- Liang, C.; Bai, Q.; Wang, Y.; Gao, Y.; Zhang, H.; Jin, B. Spatial Resolution Enhancement in OFDR Using Margenau Hill Spectrogram. J. Light. Technol. 2024, 42, 3399–3408. [Google Scholar] [CrossRef]
- Liang, C.; Wang, Y.; Gao, Y.; Zhang, H.; Jin, B.; Bai, Q. Spatial Resolution Enhancement in OFDR Using a Modified Cohen’s Class Analysis. J. Light. Technol. 2025, 43, 5915–5922. [Google Scholar] [CrossRef]
- Ou, Y.; Zhou, C.; Zheng, A.; Cheng, C.; Fan, D.; Yin, J.; Tian, H.; Li, M.; Lu, Y. Method of hybrid multiplexing for fiber-optic Fabry-Perot sensors utilizing frequency-shifted interferometry. Appl. Opt. 2014, 53, 8358–8365. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Ba, D.; Liu, L.; Qiu, L.; Yang, S.; Dong, Y. Multiplexing of Fabry-Pérot Sensor by Frequency Modulated Continuous Wave Interferometry for Quais-Distributed Sensing Application. J. Light. Technol. 2021, 39, 4529–4534. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Yu, X.; Ge, Z.; Li, T.; Sui, J.; Ba, D.; Dong, Y. Multi-Point and High-Sensitivity Hydrogen Sensor Based on OFDR and Fiber-Tip Microcavities. J. Light. Technol. 2025, 43, 6994–7000. [Google Scholar] [CrossRef]
- Feng, Z.; Tang, Y.; Cheng, Y.; Sima, C.; Yuan, L. High-Spatial-Resolution Quasi-Distributed Fiber Sensing Technique Based on Cascaded FP Cavities and DSP Algorithm. J. Light. Technol. 2024, 42, 2186–2192. [Google Scholar] [CrossRef]
- Chen, X.; Shen, F.; Wang, Z.; Huang, Z.; Wang, A. Micro-air-gap based intrinsic Fabry–Perot interferometric fiber-optic sensor. Appl. Opt. 2006, 45, 7760–7766. [Google Scholar] [CrossRef] [PubMed]
Sensing Unit | n | L (μm) | |
---|---|---|---|
Cascaded dual FP cavities | FP1 | 1 | 1000 |
FP2 | 1.4682 | 61 | |
Parallel dual FP cavities | FP1 | 1.4682 | 371 |
FP2 | 1 | 500 | |
Single FP cavity | FP | 1.4682 | 371 |
Structure | Sensing Type | Cavity Length (μm) | Refractive Index | Spatial Positioning (m) | Sensitivity |
---|---|---|---|---|---|
SMF-HCF-SMF | Temperature sensing | 151.67 | 1 | 7.7; 10.043; 12.899 | 3.87 pm/°C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Xiao, Y. Theoretical Analysis of Vernier-Effect-Induced Sensitivity Enhancement of Dual Fiber Fabry-Pérot Cavities in OFDRs. Photonics 2025, 12, 936. https://doi.org/10.3390/photonics12090936
Wang M, Xiao Y. Theoretical Analysis of Vernier-Effect-Induced Sensitivity Enhancement of Dual Fiber Fabry-Pérot Cavities in OFDRs. Photonics. 2025; 12(9):936. https://doi.org/10.3390/photonics12090936
Chicago/Turabian StyleWang, Mingxin, and Yueyu Xiao. 2025. "Theoretical Analysis of Vernier-Effect-Induced Sensitivity Enhancement of Dual Fiber Fabry-Pérot Cavities in OFDRs" Photonics 12, no. 9: 936. https://doi.org/10.3390/photonics12090936
APA StyleWang, M., & Xiao, Y. (2025). Theoretical Analysis of Vernier-Effect-Induced Sensitivity Enhancement of Dual Fiber Fabry-Pérot Cavities in OFDRs. Photonics, 12(9), 936. https://doi.org/10.3390/photonics12090936