Ptycho-LDM: A Hybrid Framework for Efficient Phase Retrieval of EUV Photomasks Using Conditional Latent Diffusion Models
Abstract
1. Introduction
- We propose Ptycho-LDM (Section 2.4), a novel framework for the efficient and accurate phase retrieval of EUV photomasks, which integrates a physics-informed ptychographic algorithm with a conditional LDM. Unlike existing approaches to phase retrieval using LDMs, our framework does not require designing additional diffusion posterior sampling techniques, which can introduce significant computational overhead and slow down the reconstruction process. By leveraging a conditional LDM, our method achieves high-quality phase retrieval while maintaining computational efficiency (Figure 1b).The proposed framework employs a hybrid methodology that combines the strengths of classical ptychographic algorithms and deep generative modeling. Specifically, we first perform a resource-constrained (i.e., fewer probe positions or fewer iterations) ptychographic reconstruction (Section 2.1) to recover the coarse spatial structure from diffraction patterns residing in the Fourier domain, followed by a refinement step using LDMs to enhance the fidelity of the reconstruction. This hybrid approach significantly reduces the number of required ptychographic iterations or probe positions, accelerating the overall phase retrieval process.
- We introduce a novel synthetic dataset, LAMP (Lensless Actinic Metrology for EUV Photomasks) (Section 2.2), tailored for photomask phase retrieval and defect inspection. This dataset is designed to support the training and evaluation of the proposed model.
- Our experimental results (Section 3.2) demonstrate that Ptycho-LDM achieves a superior reconstruction speed compared to traditional ptychographic method—Difference Map [10] while maintaining the quality of phase reconstruction as robust as Difference Map (with a PSNR > 40 dB). We provide a systematic study showing that a generative diffusion prior (Ptycho-LDM) improves the reconstruction quality, not only under simulated noise, but also generalizes effectively to real experimental data. Furthermore, we qualitatively validate Ptycho-LDM on nanometer-scale photomask inspection, showcasing its potential for accurate and fine-grained defect detection.Ptycho-LDM’s efficient utilization of low-dimensional latent spaces enables computationally efficient training and inference, making it particularly suitable for real-world applications in EUV mask imaging and inspection.
2. Method
2.1. Phase Retrieval in Ptychography
Algorithm 1 Difference map ptychographic reconstruction. |
|
Algorithm 2 Utility routines for Difference Map reconstruction. |
|
2.2. Proposed Data Generation Pipeline for Ptychography
2.3. Learning Photomask Distribution Using Likelihood-Based Generative Models
2.4. Proposed Approach
3. Experiments
3.1. Experimental Setup
3.2. Experimental Results
3.2.1. Effect of Difference Map Iterations and Probe Positions on Reconstruction Quality
3.2.2. Ptycho-LDM’s Robust Reconstruction Under Severely Constrained Conditions
3.2.3. Reconstruction Quality vs. Computation Time Trade-Off
3.2.4. Qualitative Results
3.2.5. Impact of Photon and Detector Read-Out Noise on Reconstruction Quality
3.2.6. Ptycho-LDM’s Generalizability on Real Data
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bakshi, V. EUV Lithography; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Bonam, R.; Tien, H.Y.; Chou, A.; Meli, L.; Halle, S.; Wu, I.; Huang, X.; Lei, C.; Kuan, C.; Wang, F.; et al. EUV mask and wafer defectivity: Strategy and evaluation for full die defect inspection. In Proceedings of the Extreme Ultraviolet (EUV) Lithography VII; Panning, E.M., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2016; Volume 9776, p. 97761C. [Google Scholar] [CrossRef]
- Liang, T.; Tezuka, Y.; Jager, M.; Chakravorty, K.; Sayan, S.; Frendberg, E.; Satyanarayana, S.; Ghadiali, F.; Zhang, G.; Abboud, F. EUV mask infrastructure and actinic pattern mask inspection. In Proceedings of the Extreme Ultraviolet (EUV) Lithography XI; Felix, N.M., Lio, A., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2020; Volume 11323, p. 1132310. [Google Scholar] [CrossRef]
- Goldberg, K.A.; Mochi, I. Wavelength-specific reflections: A decade of extreme ultraviolet actinic mask inspection research. J. Vac. Sci. Technol. 2010, 28, C6E1–C6E10. [Google Scholar] [CrossRef]
- Tchikoulaeva, A.; Miyai, H.; Kohyama, T.; Takehisa, K.; Kusunose, H. Enabling EUVL high-volume manufacturing with actinic patterned mask inspection. In Proceedings of the Extreme Ultraviolet (EUV) Lithography XI; Felix, N.M., Lio, A., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2020; Volume 11323, p. 113231K. [Google Scholar] [CrossRef]
- Goldberg, K.; Benk, M.P.; Wojdyla, A.; Verduijn, E.; Wood II, O.R.; Mangat, P. EUV actinic brightfield mask microscopy for predicting printed defect images. In Proceedings of the Photomask Technology 2015; Hayashi, N., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2015; Volume 9635, p. 963514. [Google Scholar] [CrossRef]
- Todoroki, T.; Miyai, H. Actinic patterned mask inspection for EUV lithography. In Proceedings of the Photomask Japan 2023: XXIX Symposium on Photomask and Next-Generation Lithography Mask Technology; Kojima, Y., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2023; Volume 12915, p. 1291502. [Google Scholar] [CrossRef]
- Roesch, M.; Kersteen, G.; Verch, A.; Albert, M.; Heringlake, P.; Gwosch, K.; Capelli, R. Quantitative access to phase effects in High-NA photomasks using AIMS EUV. In Proceedings of the 39th European Mask and Lithography Conference (EMLC 2024); Behringer, U.F., Finders, J., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2024; Volume 13273, p. 132731. [Google Scholar] [CrossRef]
- Rodenburg, J. Ptychography and Related Diffractive Imaging Methods. Adv. Imaging Electron Phys. 2008, 150, 87–184. [Google Scholar] [CrossRef]
- Thibault, P.; Dierolf, M.; Bunk, O.; Menzel, A.; Pfeiffer, F. Probe retrieval in ptychographic coherent diffractive imaging. Ultramicroscopy 2009, 109, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Maiden, A.M.; Rodenburg, J.M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 2009, 109, 1256–1262. [Google Scholar] [CrossRef] [PubMed]
- Bunk, O.; Dierolf, M.; Kynde, S.; Johnson, I.; Marti, O.; Pfeiffer, F. Influence of the overlap parameter on the convergence of the ptychographical iterative engine. Ultramicroscopy 2008, 108, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Hyder, R.; Cai, Z.; Asif, M.S. Solving phase retrieval with a learned reference. In Proceedings of the European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 425–441. [Google Scholar]
- Metzler, C.; Schniter, P.; Veeraraghavan, A.; Baraniuk, R. prDeep: Robust phase retrieval with a flexible deep network. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 3501–3510. [Google Scholar]
- Rivenson, Y.; Zhang, Y.; Günaydın, H.; Teng, D.; Ozcan, A. Non-iterative holographic image reconstruction and phase retrieval using a deep convolutional neural network. In Proceedings of the CLEO: Science and Innovations, San Jose, CA, USA, 13–18 May 2018; Optica Publishing Group: Washington, DC, USA, 2018. [Google Scholar]
- Zhang, F.; Liu, X.; Guo, C.; Lin, S.; Jiang, J.; Ji, X. Physics-based iterative projection complex neural network for phase retrieval in lensless microscopy imaging. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 10523–10531. [Google Scholar]
- Gan, W.; Zhai, Q.; McCann, M.T.; Cardona, C.G.; Kamilov, U.S.; Wohlberg, B. PtychoDV: Vision Transformer-Based Deep Unrolling Network for Ptychographic Image Reconstruction. IEEE Open J. Signal Process. 2024, 5, 539–547. [Google Scholar] [CrossRef]
- Bostan, E.; Heckel, R.; Chen, M.; Kellman, M.; Waller, L. Deep phase decoder: Self-calibrating phase microscopy with an untrained deep neural network. Optica 2020, 7, 559–562. [Google Scholar] [CrossRef]
- Hoidn, O.; Mishra, A.A.; Mehta, A. Physics constrained unsupervised deep learning for rapid, high resolution scanning coherent diffraction reconstruction. Sci. Rep. 2023, 13, 22789. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Shen, L.; Xing, L.; Ermon, S. Solving Inverse Problems in Medical Imaging with Score-Based Generative Models. In Proceedings of the NeurIPS 2021 Workshop on Deep Learning and Inverse Problems, Virtual Conference, 6–14 December 2021. [Google Scholar]
- Chung, H.; Sim, B.; Ryu, D.; Ye, J.C. Improving diffusion models for inverse problems using manifold constraints. Adv. Neural Inf. Process. Syst. 2022, 35, 25683–25696. [Google Scholar]
- Chung, H.; Kim, J.; Mccann, M.T.; Klasky, M.L.; Ye, J.C. Diffusion Posterior Sampling for General Noisy Inverse Problems. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Song, J.; Vahdat, A.; Mardani, M.; Kautz, J. Pseudoinverse-guided diffusion models for inverse problems. In Proceedings of the International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Mardani, M.; Song, J.; Kautz, J.; Vahdat, A. A Variational Perspective on Solving Inverse Problems with Diffusion Models. In Proceedings of the Twelfth International Conference on Learning Representations, Vienna, Austria, 7–11 May 2024. [Google Scholar]
- Song, B.; Kwon, S.M.; Zhang, Z.; Hu, X.; Qu, Q.; Shen, L. Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency. In Proceedings of the Twelfth International Conference on Learning Representations, Vienna, Austria, 7–11 May 2024. [Google Scholar]
- Rout, L.; Chen, Y.; Kumar, A.; Caramanis, C.; Shakkottai, S.; Chu, W.S. Beyond first-order tweedie: Solving inverse problems using latent diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 9472–9481. [Google Scholar]
- Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 10684–10695. [Google Scholar]
- Dhariwal, P.; Nichol, A. Diffusion models beat gans on image synthesis. Adv. Neural Inf. Process. Syst. 2021, 34, 8780–8794. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Konijnenberg, S. An introduction to the theory of ptychographic phase retrieval methods. Adv. Opt. Technol. 2017, 6, 423–438. [Google Scholar] [CrossRef]
- Köfferlein, M. Available online: https://www.klayout.de (accessed on 2 September 2025).
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th (expanded) ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Xiao, Z.; Kreis, K.; Vahdat, A. Tackling the generative learning trilemma with denoising diffusion gans. arXiv 2021, arXiv:2112.07804. [Google Scholar]
- Esser, P.; Rombach, R.; Ommer, B. Taming transformers for high-resolution image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 12873–12883. [Google Scholar]
- Van Den Oord, A.; Vinyals, O. Neural discrete representation learning. Adv. Neural Inf. Process. Syst. 2017, 30, 6309–6318. [Google Scholar]
- Swiss National Supercomputing Centre (CSCS). Alps Supercomputer at the Swiss National Supercomputing Centre (CSCS). Available online: https://www.cscs.ch/computers/alps (accessed on 28 May 2025).
- Song, J.; Meng, C.; Ermon, S. Denoising Diffusion Implicit Models. arXiv 2010, arXiv:2010.02502. [Google Scholar]
- Mochi, I.; Helfenstein, P.; Rajeev, R.; Fernandez, S.; Kazazis, D.; Yoshitake, S.; Ekinci, Y. Actinic inspection of EUV reticles with arbitrary pattern design. In Proceedings of the International Conference on Extreme Ultraviolet Lithography 2017, Monterey, CA, USA, 1–5 October 2017; SPIE: Bellingham, WA, USA, 2017; Volume 10450, pp. 28–37. [Google Scholar]
- Guizar-Sicairos, M.; Holler, M.; Diaz, A.; Vila-Comamala, J.; Bunk, O.; Menzel, A. Role of the illumination spatial-frequency spectrum for ptychography. Phys. Rev. B—Condensed Matter Mater. Phys. 2012, 86, 100103. [Google Scholar] [CrossRef]
- Mochi, I.; Fernandez, S.; Nebling, R.; Locans, U.; Helfenstein, P.; Rajeev, R.; Dejkameh, A.; Kazazis, D.; Tseng, L.T.; Ekinci, Y. Absorber and phase defect inspection on EUV reticles using RESCAN. In Proceedings of the Extreme Ultraviolet (EUV) Lithography X, San Jose, CA, USA, 24–28 February 2019; SPIE: Bellingham, WA, USA, 2019; Volume 10957, pp. 211–218. [Google Scholar]
- Helfenstein, P.; Rajeev, R.; Mochi, I.; Kleibert, A.; Vaz, C.A.F.; Ekinci, Y. Beam drift and partial probe coherence effects in EUV reflective-mode coherent diffractive imaging. Opt. Express 2018, 26, 12242–12256. [Google Scholar] [CrossRef] [PubMed]
- Enders, B.; Thibault, P. A computational framework for ptychographic reconstructions. Proc. R. Soc. Math. Phys. Eng. Sci. 2016, 472, 20160640. [Google Scholar] [CrossRef] [PubMed]
Ptycho-LDM | DifMap-1K | DifMap-2K | DifMap-3K | DifMap-4K | DifMap-5K | DifMap-6K | |
---|---|---|---|---|---|---|---|
Difference Map Probe Positions = 20 | |||||||
MSE↓ | 7.33 × 10−5 | 2.77 × 10−3 | 2.05 × 10−4 | 7.76 × 10−5 | 3.54 × 10−5 | 2.00 × 10−5 | 1.21 × 10−5 |
Time(s)↓ | 9.2 | 8.5 | 17.0 | 25.5 | 34.0 | 42.5 | 57.0 |
Difference Map Probe Positions = 5 | |||||||
MSE↓ | 5.94 × 10−5 | 6.71 × 10−2 | 2.64 × 10−2 | 1.25 × 10−2 | 6.70 × 10−3 | 6.03 × 10−3 | 7.89 × 10−3 |
Time(s)↓ | 9.51 | 1.5 | 2.9 | 4.4 | 5.9 | 7.3 | 8.8 |
DifMap (w/o Noise) | Ptycho-LDM (w/o Noise) | DifMap (w/ Noise) | Ptycho-LDM (w/Noise) (w/o Training) | Ptycho-LDM (w/Noise) (w/Training) | |
---|---|---|---|---|---|
MSE ↓ | 6.71 × 10−2 | 1.7 × 10−3 | 2.01 × 10−1 | 4.75 × 10−2 | 1.3 × 10−2 |
PSNR (dB) ↑ | 11.73 | 27.70 | 6.97 | 13.23 | 18.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, S.; Ansuinelli, P.; Barba, L.; Mochi, I.; Haro, B.B. Ptycho-LDM: A Hybrid Framework for Efficient Phase Retrieval of EUV Photomasks Using Conditional Latent Diffusion Models. Photonics 2025, 12, 900. https://doi.org/10.3390/photonics12090900
Saha S, Ansuinelli P, Barba L, Mochi I, Haro BB. Ptycho-LDM: A Hybrid Framework for Efficient Phase Retrieval of EUV Photomasks Using Conditional Latent Diffusion Models. Photonics. 2025; 12(9):900. https://doi.org/10.3390/photonics12090900
Chicago/Turabian StyleSaha, Suman, Paolo Ansuinelli, Luis Barba, Iacopo Mochi, and Benjamín Béjar Haro. 2025. "Ptycho-LDM: A Hybrid Framework for Efficient Phase Retrieval of EUV Photomasks Using Conditional Latent Diffusion Models" Photonics 12, no. 9: 900. https://doi.org/10.3390/photonics12090900
APA StyleSaha, S., Ansuinelli, P., Barba, L., Mochi, I., & Haro, B. B. (2025). Ptycho-LDM: A Hybrid Framework for Efficient Phase Retrieval of EUV Photomasks Using Conditional Latent Diffusion Models. Photonics, 12(9), 900. https://doi.org/10.3390/photonics12090900