Rapid Measurement of Concentration-Dependent Viscosity Based on the Imagery of Liquid-Core Cylindrical Lens
Abstract
1. Introduction
2. Calculated Method of Liquid Viscosity
3. Experimental Method for Measuring Liquid Viscosity
3.1. Experimental Setup
3.2. Experimental Principle
4. Results and Discussion
4.1. Experimental Arrangement for Viscosity Measurement
4.2. Experimental Concentration Profile from Diffusion Images
4.3. Measurement Results of the Viscosity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
LCL | liquid-core cylindrical lens |
References
- Andrade, E.N.C. The viscosity of liquids. Nature 1930, 125, 309–310. [Google Scholar] [CrossRef]
- Viswanath, D.S.; Ghosh, T.K.; Prasad, D.H.; Dutt, N.V.; Rani, K.Y. Viscosity of Liquids: Theory, Estimation, Experiment, and Data; Springer Science & Business Media: Berlin, Germany, 2007. [Google Scholar]
- Atul, B. Review on viscosity measurement: Devices, methods and models. J. Thermanal. Calorim. 2023, 148, 6527–6543. [Google Scholar]
- Leblanc, G.E.; Secco, R.A.; Kostic, M. Viscosity measurement. In Mechanical Variables Measurement-Solid, Fluid, and Thermal; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Brooks, R.F.; Dinsdale, A.T.; Quested, P.N. The measurement of viscosity of alloys—A review of methods, data and models. Meas. Sci. Technol. 2005, 16, 354. [Google Scholar] [CrossRef]
- Brizard, M.; Megharfi, M.; Mahé, E.; Verdier, C. Design of a high precision falling-ball viscometer. Rev. Sci. Instrum. 2005, 76, 025109. [Google Scholar] [CrossRef]
- Ali, S.H.; Al-Zuky, A.A.D.; Al-Saleh, A.H.; Mohamad, H.J. Measure liquid viscosity by tracking falling ball Automatically depending on image processing algorithm. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1294, p. 022002. [Google Scholar]
- Ballereau, P.; Truong, D.; Matias, A. Absolute falling ball viscometer, adapted to the low viscosities of liquids. Int. J. Metrol. Qual. Eng. 2016, 7, 305. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, M.; Kan, Y.; Liu, L.; Dai, X.; Zheng, G.; Zhang, Z. Influencing factors of viscosity measurement by rotational method. Polym. Test 2018, 70, 144–150. [Google Scholar] [CrossRef]
- Luo, H.; Huang, X.; Rongyan, T.; Ding, H.; Huang, J.; Wang, D.; Liu, Y.; Hong, Z. Advanced method for measuring asphalt viscosity: Rotational plate viscosity method and its application to asphalt construction temperature prediction. Constr. Build. Mater. 2021, 301, 124129. [Google Scholar] [CrossRef]
- Zhou, Y.; Jin, Z.Y.; Yang, Z. Effects of surface tension and viscosity on the impact process of droplets onto a rotational surface. Phys. Fluids 2024, 36, 072110. [Google Scholar] [CrossRef]
- Riesch, C.; Reichel, E.K.; Keplinger, F.; Jakoby, B.; Tenje, M. Characterizing vibrating cantilevers for liquid viscosity and density sensing. J. Sensors 2008, 1, 697062. [Google Scholar] [CrossRef]
- Diogo, J.C.F.; Caetano, F.J.P.; Fareleira, J.M.N.A.; Wakeham, W.A. Viscosity measurements of three ionic liquids using the vibrating wire technique. Fluid Phase Equilibr. 2013, 353, 76–86. [Google Scholar] [CrossRef]
- Ma, J.; Huang, X.; Bae, H.; Zheng, Y.; Liu, C.; Zhao, M.; Yu, M. Liquid viscosity measurement using a vibrating flexure hinged structure and a fiber-optic sensor. IEEE Sens. J. 2016, 16, 5249–5258. [Google Scholar] [CrossRef]
- Statsenko, A.; Inami, W.; Kawata, Y. Measurement of viscosity of liquids using optical tweezers. Opt. Commun. 2017, 402, 9–13. [Google Scholar] [CrossRef]
- Madsen, L.S.; Waleed, M.; Casacio, C.A.; Terrasson, A.; Stilgoe, A.B.; Taylor, M.A.; Bowen, W.P. Ultrafast viscosity measurement with ballistic optical tweezers. Nat. Photonics 2021, 15, 386–392. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; Wang, Y.; Zhu, S.; Gao, B.Z.; Yuan, X.C. Measurement of the microscopic viscosities of microfluids with a dynamic optical tweezers system. Laser Phys. 2014, 24, 065601. [Google Scholar] [CrossRef]
- Verma, G.; Yadav, G.; Saraj, C.S.; Li, L.; Miljkovic, N.; Delville, J.P.; Li, W. A versatile interferometric technique for probing the thermophysical properties of complex fluids. Light-Sci. Appl. 2022, 11, 115. [Google Scholar] [CrossRef]
- Guzmán, C.; Flyvbjerg, H.; Köszali, R.; Ecoffet, C.; Forró, L.; Jeney, S. In situ viscometry by optical trapping interferometry. Appl. Phys. Lett. 2008, 93, 184102. [Google Scholar] [CrossRef]
- Ramírez-Miquet, E.E.; Perchoux, J.; Loubière, K.; Tronche, C.; Prat, L.; Sotolongo-Costa, O. Optical feedback interferometry for velocity measurement of parallel liquid-liquid flows in a microchannel. Sensors 2016, 16, 1233. [Google Scholar] [CrossRef]
- Wei, L.; Meng, W.; Chen, Y.; He, B.; Zhou, Q.; Pu, X. Optical measurement of concentration-dependent diffusion coefficients of binary solution using an asymmetric liquid-core cylindrical lens. Opt. Laser. Eng. 2020, 126, 105867. [Google Scholar] [CrossRef]
- Krause, A.L.; Gaffney, E.A.; Walker, B.J. Concentration-dependent domain evolution in reaction–diffusion systems. Bull. Math. Biol. 2023, 85, 14. [Google Scholar] [CrossRef]
- Hashim, F.A.; Mostafa, R.R.; Hussien, A.G.; Mirjalili, S.; Sallam, K.M. Fick’s Law Algorithm: A physical law-based algorithm for numerical optimization. Knowl.-Based Syst. 2023, 260, 110146. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Oxford University: Oxford, UK, 1975. [Google Scholar]
- Lipnikov, K.; Manzini, G.; Shashkov, M. Mimetic finite difference method. J. Comput. Phys. 2014, 257, 1163–1227. [Google Scholar] [CrossRef]
- Jena, S.R.; Senapati, A. Explicit and implicit numerical investigations of one-dimensional heat equation based on spline collocation and Thomas algorithm. Soft Comput. 2024, 28, 12227–12248. [Google Scholar] [CrossRef]
- Elamin, K.; Swenson, J. Brownian motion of single glycerol molecules in an aqueous solution as studied by dynamic light scattering. Phys. Rev. E 2015, 91, 032306. [Google Scholar] [CrossRef]
- Chen, B.; Sigmund, E.E.; Halperin, W.P. Stokes-Einstein relation in supercooled aqueous solutions of glycerol. Phys. Rev. Lett. 2006, 96, 145502. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Meng, W.; Pu, X. New method to measure liquid diffusivity by analyzing an instantaneous diffusion image. Opt. Express 2015, 23, 23155–23166. [Google Scholar] [CrossRef] [PubMed]
- Pecora, R. Dynamic light scattering measurement of nanometer particles in liquids. J. Nanopart. Res. 2000, 2, 123–131. [Google Scholar] [CrossRef]
- Linegar, K.L.; Adeniran, A.E.; Kostko, A.F.; Anisimov, M.A. Hydrodynamic radius of polyethylene glycol in solution obtained by dynamic light scattering. Colloid J. 2010, 72, 279–281. [Google Scholar] [CrossRef]
- Shankar, P.N.; Manoj, K. Experimental determination of the kinematic viscosity of glycerol-water mixtures. Proceedings of the Royal Society of London. Ser. A Math. Phys. Sci. 1994, 444, 573–581. [Google Scholar]
C/% | Method Using LCL | Method Using Capillary Tube [32] | |||
---|---|---|---|---|---|
298.15 K | 303.15 K | 307.15 K | 298.15 K | 303.15 K | |
0 | 0.886 | 0.806 | 0.744 | 0.897 | 0.803 |
5 | 0.968 | 0.910 | 0.837 | ||
10 | 1.074 | 1.029 | 0.944 | 1.13 | 1.04 |
15 | 1.211 | 1.164 | 1.064 | ||
20 | 1.391 | 1.321 | 1.203 | 1.49 | 1.32 |
25 | 1.626 | 1.506 | 1.364 | ||
30 | 1.936 | 1.730 | 1.557 | 2.00 | 1.76 |
35 | 2.346 | 2.014 | 1.795 | ||
40 | 2.875 | 2.395 | 2.105 | 2.84 | 2.48 |
45 | 3.520 | 2.953 | 2.535 | ||
50 | 4.201 | 3.880 | 3.197 | 4.32 | 3.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Zhang, S.; Dai, B.; Zhang, D. Rapid Measurement of Concentration-Dependent Viscosity Based on the Imagery of Liquid-Core Cylindrical Lens. Photonics 2025, 12, 872. https://doi.org/10.3390/photonics12090872
Wei L, Zhang S, Dai B, Zhang D. Rapid Measurement of Concentration-Dependent Viscosity Based on the Imagery of Liquid-Core Cylindrical Lens. Photonics. 2025; 12(9):872. https://doi.org/10.3390/photonics12090872
Chicago/Turabian StyleWei, Li, Shuocong Zhang, Bo Dai, and Dawei Zhang. 2025. "Rapid Measurement of Concentration-Dependent Viscosity Based on the Imagery of Liquid-Core Cylindrical Lens" Photonics 12, no. 9: 872. https://doi.org/10.3390/photonics12090872
APA StyleWei, L., Zhang, S., Dai, B., & Zhang, D. (2025). Rapid Measurement of Concentration-Dependent Viscosity Based on the Imagery of Liquid-Core Cylindrical Lens. Photonics, 12(9), 872. https://doi.org/10.3390/photonics12090872