Validating Pseudo-Free-Space Conditions in a Planar Waveguide Using Phase Retrieval from Fresnel Diffraction Patterns
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of Samples and Measurements of Optical Properties
2.2. Simulations of the Propagation of Light and Phase Retrieval
3. Results
3.1. Reflectance Maps and the Distribution of Intensity
3.2. Intensity Distribution and Phase Retrieval
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MPGS | Multiple-Plane Gerchberg–Saxton |
PML | Perfectly Matched Layer |
PECVD | Plasma Enhanced Chemical Vapor Deposition |
RMS | Root Mean Square |
SCCM | Standard Cubic Centimeters per Minute |
References
- Doughan, I.; Halder, A.; Reduto, I.; Koivurova, M.; Aalto, T.; Roussey, M.; Turunen, J. Determination of mode strengths in channel waveguide from the complex electric field. Sci. Rep. 2024, 14, 28665. [Google Scholar] [CrossRef]
- Ramadan, T.A. Analytical solutions for the guided modes of rectangular silicon optical waveguides: A plane-wave approach. Opt. Quantum Electron. 2024, 56, 524. [Google Scholar] [CrossRef]
- Hazard, C. On the absence of trapped modes in locally perturbed open waveguides. IMA J. Appl. Math. 2014, 80, 1049–1062. [Google Scholar] [CrossRef]
- Cruz y Cruz, S.; Rosas-Ortiz, O. Leaky modes of waveguides as a classical optics analogy of quantum resonances. Adv. Math. Phys. 2015, 2015, 281472. [Google Scholar] [CrossRef]
- Shechtman, Y.; Small, E.; Lahini, Y.; Verbin, M.; Eldar, Y.C.; Silberger, Y.; Segev, M. Sparsity-based super-resolution and phase-retrieval in waveguide arrays. Opt. Express 2013, 21, 24015–24024. [Google Scholar] [CrossRef]
- Candès, E.J.; Li, X. Solving quadratic equations via PhaseLift when there are about as many equations as unknowns. Found. Comput. Math. 2014, 14, 1017–1026. [Google Scholar] [CrossRef]
- Pelliccia, D.; Paganin, D.M.; Sorrentino, A.; Bukreeva, I.; Cedola, A.; Lagomarsino, S. Iterative retrieval of one-dimensional x ray wave field using a single intensity measurement. Opt. Lett. 2012, 37, 262–264. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ren, G.; Dubey, A.; Feleppa, T.; Liu, X.; Boes, A.; Mitchell, A.; Lowery, A.J. Phase retrieval of programmable photonic integrated circuits based on an on-chip fractional-delay reference path. Optica 2022, 9, 1401–1407. [Google Scholar] [CrossRef]
- Adams, W.; Sadatgol, M.; Zhang, X.; Güney, D.Ö. Bringing the ‘perfect lens’ into focus by near-perfect compensation of losses without gain media. New J. Phys. 2016, 18, 125004. [Google Scholar] [CrossRef]
- Chen, R.; Fang, Z.; Miller, F.; Rarick, H.; Fröch, J.E.; Majumdar, A. Opportunities and challenges for large-scale phase-change material integrated electro-photonics. ACS Photonics 2022, 9, 3181–3195. [Google Scholar] [CrossRef]
- Liu, X.; Ren, G.; Xu, X.; Dubey, A.; Feleppa, T.; Boes, A.; Mitchell, A.; Lowery, A. ‘Dial up’ photonic integrated circuit filter. J. Light. Technol. 2023, 41, 1775–1783. [Google Scholar] [CrossRef]
- Tanhayivash, Y.; Soofi, H.; Nikmehr, S. Phase and amplitude gradient waveguide coupled metasurfaces. Sci. Rep. 2025, 15, 19964. [Google Scholar] [CrossRef] [PubMed]
- Karitans, V.; Ozolinsh, M.; Fomins, S. Phase retrieval of one-dimensional objects by the multiple-plane Gerchberg-Saxton algorithm implemented into a digital signal processor. Optics 2024, 5, 514–522. [Google Scholar] [CrossRef]
- Guo, X.; Ding, Y.; Chen, X.; Duan, Y.; Ni, X. Molding free-space light with guided wave-driven metasurfaces. Sci. Adv. 2020, 6, eabb4142. [Google Scholar] [CrossRef]
- Kim, S.; Westly, D.A.; Roxworthy, B.R.; Li, Q.; Yulaev, A.; Srinivasan, K.; Aksyuk, V.A. Photonic waveguide mode to free-space Gaussian beam extreme mode converter. Light Sci. Appl. 2018, 7, 72. [Google Scholar] [CrossRef]
- Gangwar, R.K.; Pathak, A.K.; Kumar, S. Recent progress in photonic crystal devices and their applications: A review. Photonics 2023, 10, 1199. [Google Scholar] [CrossRef]
- Singhal, A.; Paprotny, I. Slow-light enhanced liquid and gas sensing using 2-D photonic crystal line waveguides—A review. IEEE Sens. J. 2022, 22, 20126–20137. [Google Scholar] [CrossRef]
- Čtyroký, J.; Petráček, J. Photonic integrated circuit with bound states in the continuum: Comment. Optica 2022, 9, 681–682. [Google Scholar] [CrossRef]
- Aggarwal, A.; Mittal, A.; Kalra, Y. Design of silicon slab waveguides based all-optical logic gates. Microw. Opt. Technol. Lett. 2024, 66, e33981. [Google Scholar] [CrossRef]
- Duguay, M.A.; Kokubun, Y.; Koch, T.L.; Pfeiffer, L. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Appl. Phys. Lett. 1986, 49, 13–15. [Google Scholar] [CrossRef]
- Kats, M.A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2013, 12, 20–24. [Google Scholar] [CrossRef]
- Unger, H.G. Planar Optical Waveguides and Fibres, 1st ed.; Oxford Clarendon Press: Oxford, UK, 1977; pp. 189–287. [Google Scholar]
- Hasanli, S.; Hasan, M.; Yoon, H.; Lee, S.; Kim, S. Exceptional points in a passive strip waveguide. Nanophotonics 2025, 14, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Habermehl, S.; Schlesinger, C.; Prill, D. Comparison and evaluation of pair distribution functions, using a similarity measure based on cross-correlation functions. J. Appl. Crystallogr. 2021, 54, 612–623. [Google Scholar] [CrossRef] [PubMed]
- Karitans, V.; Ozolinsh, M.; Lapins, A.; Fomins, S. The effect of noise, a constant background, and bit depth on the phase retrieval of pure phase objects. Opt. Appl. 2021, 51, 257–269. [Google Scholar] [CrossRef]
- Shechtman, Y.; Beck, A.; Eldar, Y.C. GESPAR: Efficient phase retrieval of sparse signals. IEEE Trans. Signal Process. 2014, 62, 928–938. [Google Scholar] [CrossRef]
- ElKabbash, M.; Sousa-Castillo, A.; Nguyen, Q.; Mariño-Fernández, R.; Hoffman, N.; Correa-Duarte, M.; Strangi, G. Tunable black gold: Controlling the near-field coupling of immobilized Au nanoparticles embedded in mesoporous silica capsules. Adv. Opt. Mater. 2017, 5, 1700617. [Google Scholar] [CrossRef]
- Ciesielski, A.; Skowronski, L.; Pacuski, W.; Szopli, T. Permittivity of Ge, Te and Se thin films in the 200–1500 nm spectral range. Predicting the segregation effects in silver. Mat. Sci. Semicon. Proc. 2018, 81, 64–67. [Google Scholar] [CrossRef]
- Smith, J.S.; Dean, B.H.; Haghani, S. Distributed computing architecture for image-based wavefront sensing and 2D FFTs. In Proceedings of the Advanced Software and Control for Astronomy, Orlando, FL, USA, 24–31 May 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karitans, V.; Hammar, M.; Zubkins, M.; Letko, E.; Ozolinsh, M.; Fomins, S. Validating Pseudo-Free-Space Conditions in a Planar Waveguide Using Phase Retrieval from Fresnel Diffraction Patterns. Photonics 2025, 12, 740. https://doi.org/10.3390/photonics12080740
Karitans V, Hammar M, Zubkins M, Letko E, Ozolinsh M, Fomins S. Validating Pseudo-Free-Space Conditions in a Planar Waveguide Using Phase Retrieval from Fresnel Diffraction Patterns. Photonics. 2025; 12(8):740. https://doi.org/10.3390/photonics12080740
Chicago/Turabian StyleKaritans, Varis, Mattias Hammar, Martins Zubkins, Edvins Letko, Maris Ozolinsh, and Sergejs Fomins. 2025. "Validating Pseudo-Free-Space Conditions in a Planar Waveguide Using Phase Retrieval from Fresnel Diffraction Patterns" Photonics 12, no. 8: 740. https://doi.org/10.3390/photonics12080740
APA StyleKaritans, V., Hammar, M., Zubkins, M., Letko, E., Ozolinsh, M., & Fomins, S. (2025). Validating Pseudo-Free-Space Conditions in a Planar Waveguide Using Phase Retrieval from Fresnel Diffraction Patterns. Photonics, 12(8), 740. https://doi.org/10.3390/photonics12080740