Recovery of Optical Transport Coefficients Using Diffusion Approximation in Bilayered Tissues: A Theoretical Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Bi-Layered Tissue Models
2.2. Monte Carlo Simulation of Reflectance Signals
2.3. Forward-Modeling of Diffuse Reflectance Signal
2.4. Inverse Fitting of Reflectance
2.5. Retrieval of Functional Endpoints
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SI | Semi Infinite |
DT | Diffusion Theory |
MC | Monte Carlo |
dHb | deoxygenated hemoglobin |
HbO | oxygenated hemoglobin |
THb | Total Hemoglobin Concentration |
Fractional Oxygen Saturation | |
SDS | Source Detector Separation |
SNR | Signal-to-Noise Ratio |
LVM | Levenberg–Marquardt Method |
TD | Time Domain |
DOS | Diffuse Optical Spectroscopy |
Appendix A. Computed Optical Transport Coefficients
Tissue Model | Layer | ||
---|---|---|---|
Head | Top (scalp, skull) | ||
Bottom (Brain) | |||
Muscle | Top (skin, fat) | ||
Bottom (Muscle) |
Tissue Model | Layer | ||
---|---|---|---|
Head | Top (scalp, skull) | ||
Bottom (Brain) | |||
Muscle | Top (skin, fat) | ||
Bottom (Muscle) |
Tissue Model | Layer | ||
---|---|---|---|
Head | Top (scalp, skull) | ||
Bottom (Brain) | |||
Muscle | Top (skin, fat) | ||
Bottom (Muscle) |
Appendix B. Reconstruction of Optical Coefficients
Appendix C. Reconstruction of Deoxygenated and Oxygenated Hemoglobin Concentrations
Appendix D. Reconstruction of Optical Coefficients Using Semi-Infinite Tissue Approximation
References
- Blaney, G.; Donaldson, R.; Mushtak, S.; Nguyen, H.; Vignale, L.; Fernandez, C.; Pham, T.; Sassaroli, A.; Fantini, S. Dual-Slope Diffuse Reflectance Instrument for Calibration-Free Broadband Spectroscopy. Appl. Sci. 2021, 11, 1757. [Google Scholar] [CrossRef] [PubMed]
- Shimada, M.; Hoshi, Y.; Yamada, Y. Simple algorithm for the measurement of absorption coefficients of a two-layered medium by spatially resolved and time-resolved reflectance. Appl. Opt. 2005, 44, 7554–7563. [Google Scholar] [CrossRef]
- Sekar, S.K.V.; Lanka, P.; Farina, A.; Mora, A.D.; Andersson-Engels, S.; Taroni, P.; Pifferi, A. Broadband Time Domain Diffuse Optical Reflectance Spectroscopy: A Review of Systems, Methods, and Applications. Appl. Sci. 2019, 9, 5465. [Google Scholar] [CrossRef]
- Ugai, T.; Sasamoto, N.; Lee, H.Y.; Ando, M.; Song, M.; Tamimi, R.M.; Kawachi, I.; Campbell, P.T.; Giovannucci, E.L.; Weiderpass, E.; et al. Is early-onset cancer an emerging global epidemic? Current evidence and future implications. Nat. Rev. Clin. Oncol. 2022, 19, 656–673. [Google Scholar] [CrossRef]
- Ferrari, M.; Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage 2012, 63, 921–935. [Google Scholar] [CrossRef] [PubMed]
- Georgakoudi, I.; Rice, W.L.; Hronik-Tupaj, M. Optical spectroscopy and imaging for the noninvasive evaluation of engineered tissues. Tissue Eng. Part. Rev. 2008, 14, 321–340. [Google Scholar] [CrossRef]
- Conkey, D.B.; Brown, A.N.; Caravaca-Aguirre, A.M.; Piestun, R. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix. Nat. Commun. 2020, 11, 6154. [Google Scholar] [CrossRef]
- Yamada, Y.; Suzuki, H.; Yamashita, Y. Time-Domain Near-Infrared Spectroscopy and Imaging: A Review. Appl. Sci. 2019, 9, 1127. [Google Scholar] [CrossRef]
- Pifferi, A.; Contini, D.; Mora, A.D.; Farina, A.; Spinelli, L.; Torricelli, A. New frontiers in time-domain diffuse optics, a review. J. Biomed. Opt. 2016, 21, 091310. [Google Scholar] [CrossRef]
- Boer, L.L.D.; Bydlon, T.M.; Duijnhoven, F.V.; Peeters, M.J.T.V.; Loo, C.E.; Winter-Warnars, G.A.; Sanders, J.; Sterenborg, H.J.; Hendriks, B.H.; Ruers, T.J. Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery. J. Transl. Med. 2018, 16, 367. [Google Scholar] [CrossRef]
- Hallacoglu, B. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy. J. Biomed. Opt. 2012, 17, 081406. [Google Scholar] [CrossRef] [PubMed]
- Farina, A.; Torricelli, A.; Bargigia, I.; Spinelli, L.; Cubeddu, R.; Foschum, F.; Jäger, M.; Simon, E.; Fugger, O.; Kienle, A.; et al. In-vivo multilaboratory investigation of the optical properties of the human head. Biomed. Opt. Express 2015, 6, 2609–2623. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Lacerenza, M.; Amendola, C.; Buttafava, M.; Contini, D.; Rossi, V.; Spinelli, L.; Zanelli, S.; Zuccotti, G.; Torricelli, A. Cerebral baseline optical and hemodynamic properties in pediatric population: A large cohort time-domain near-infrared spectroscopy study. Neurophotonics 2024, 11, 045009. [Google Scholar] [CrossRef]
- Bossi, A.; Bianchi, L.; Saccomandi, P.; Pifferi, A. Optical signatures of thermal damage on ex-vivo brain, lung and heart tissues using time-domain diffuse optical spectroscopy. Biomed. Opt. Express 2024, 15, 2481–2497. [Google Scholar] [CrossRef]
- Martelli, F.; Binzoni, T.; Bianco, S.D.; Liemert, A.; Kienle, A. Light Propagation Through Biological Tissue and Other Diffusive Media_ Theory, Solutions, and Validations; SPIE: Washington, DC, USA, 2022. [Google Scholar]
- Hoshi, Y. New Horizons in Time-Domain Diffuse Optical Spectroscopy and Imaging; MDPI: Basel, Switzerland, 2020. [Google Scholar]
- Blaney, G.; Sassaroli, A.; Fantini, S. Spatial sensitivity to absorption changes for various near-infrared spectroscopy methods: A compendium review. J. Innov. Opt. Health Sci. 2024, 17, 2430001. [Google Scholar] [CrossRef]
- Wada, H.; Yoshizawa, N.; Ohmae, E.; Ueda, Y.; Yoshimoto, K.; Mimura, T.; Nasu, H.; Asano, Y.; Ogura, H.; Sakahara, H.; et al. Water and lipid content of breast tissue measured by six-wavelength time-domain diffuse optical spectroscopy. J. Biomed. Opt. 2022, 27, 105002. [Google Scholar] [CrossRef]
- Tagliabue, S.; Kacprzak, M.; Rey-Perez, A.; Baena, J.; Riveiro, M.; Maruccia, F.; Fischer, J.B.; Poca, M.A.; Durduran, T. How the heterogeneity of the severely injured brain affects hybrid diffuse optical signals: Case examples and guidelines. Neurophotonics 2024, 11, 045005. [Google Scholar] [CrossRef] [PubMed]
- Kienle, A.; Glanzmann, T.; Wagnières, G.; van den Bergh, H. Investigation of two-layered turbid media with time-resolved reflectance. Appl. Opt. 1998, 37, 6852–6862. [Google Scholar] [CrossRef]
- Taroni, P.; Pifferi, A.; Quarto, G.; Farina, A.; Ieva, F.; Paganoni, A.M.; Abbate, F.; Cassano, E.; Cubeddu, R. Time domain diffuse optical spectroscopy: In-vivo quantification of collagen in breast tissue. In Proceedings of the Optical Methods for Inspection, Characterization, and Imaging of Biomaterials II, Munich, Germany, 21–25 June 2015; SPIE: Washington, DC, USA, 2015; Volume 9529, pp. 140–147. [Google Scholar]
- Pellicer, A.; del Carmen Bravo, M. Near-infrared spectroscopy: A methodology-focused review. Semin. Fetal Neonatal Med. 2011, 16, 42–49. [Google Scholar] [CrossRef]
- Vera, D.A.; García, H.A.; Waks-Serra, M.V.; Carbone, N.A.; Iriarte, D.I.; Pomarico, J.A. Determining light absorption changes in multilayered turbid media through analytically computed photon mean partial pathlengths. Opt. Pura Apl. 2023, 56, 51145. [Google Scholar] [CrossRef]
- Hielscher, A.H.; Liu, H.; Chance, B.; Tittel, F.K.; Jacques, S.L. Time-resolved photon emission from layered turbid media. Appl. Opt. 1996, 35, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Lanka, P.; Segala, A.; Farina, A.; Sekar, S.K.V.; Nisoli, E.; Valerio, A.; Taroni, P.; Cubeddu, R.; Pifferi, A. Non-invasive investigation of adipose tissue by time domain diffuse optical spectroscopy. Biomed. Opt. Express 2020, 11, 2779–2793. [Google Scholar] [CrossRef] [PubMed]
- Giovannella, M.; Contini, D.; Pagliazzi, M.; Pifferi, A.; Spinelli, L.; Erdmann, R.; Donat, R.; Rocchetti, I.; Rehberger, M.; Konig, N.; et al. BabyLux device: A diffuse optical system integrating diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy for the neuromonitoring of the premature newborn brain. Neurophotonics 2019, 6, 025007. [Google Scholar] [CrossRef] [PubMed]
- Jones, Z.D.; Reitzle, D.; Kienle, A. Errors in diffuse optical absorption spectroscopy of two-layered turbid media due to assuming a homogeneous medium. Opt. Lett. 2025, 50, 3118–3121. [Google Scholar] [CrossRef]
- Ferrari, M.; Quaresima, V. Near Infrared Brain and Muscle Oximetry: From the Discovery to Current Applications. J. Near Infrared Spectrosc. 2012, 20, 1–14. [Google Scholar] [CrossRef]
- Helton, M.; Zerafa, S.; Vishwanath, K.; Mycek, M.A. Efficient computation of the steady-state and time-domain solutions of the photon diffusion equation in layered turbid media. Sci. Rep. 2022, 12, 18979. [Google Scholar] [CrossRef]
- Jacques, S.L. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 58, R37. [Google Scholar] [CrossRef]
- Gagnon, L.; Gauthier, C.; Hoge, R.D.; Lesage, F.; Selb, J.; Boas, D.A. Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system. J. Biomed. Opt. 2008, 13, 054019. [Google Scholar] [CrossRef]
- Sato, C.; Shimada, M.; Yamada, Y.; Hoshi, Y. Extraction of depth-dependent signals from time-resolved reflectance in layered turbid media. J. Biomed. Opt. 2005, 10, 064008. [Google Scholar] [CrossRef]
- Sharma, M.; Hennessy, R.; Markey, M.K.; Tunnell, J.W. Verification of a two-layer inverse Monte Carlo absorption model using multiple source-detector separation diffuse reflectance spectroscopy. Biomed. Opt. Express 2014, 5, 40. [Google Scholar] [CrossRef]
- Blaney, G.; Bottoni, M.; Sassaroli, A.; Fernandez, C.; Fantini, S. Broadband diffuse optical spectroscopy of two-layered scattering media containing oxyhemoglobin, deoxyhemoglobin, water, and lipids. J. Innov. Opt. Health Sci. 2022, 15, 2250020. [Google Scholar] [CrossRef]
- Steinbrink, J.; Wabnitz, H.; Obrig, H.; Villringer, A.; Rinneberg, H. Determining changes in NIR absorption using a layered model of the human head. Phys. Med. Biol. 2001, 46, 879–896. [Google Scholar] [CrossRef] [PubMed]
- Kienle, A.; Patterson, M.S.; Dögnitz, N.; Bays, R.; Wagnières, G.; van den Bergh, H. Noninvasive determination of the optical properties of two-layered turbid media. Appl. Opt. 1998, 37, 779–791. [Google Scholar] [CrossRef]
- Kienle, A.; Patterson, M.S. Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium. J. Opt. Soc. Am. A 1997, 14, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Tualle, J.M.; Prat, J.; Tinet, E.; Avrillier, S. Real-space Green’s function calculation for the solution of the diffusion equation in stratified turbid media. J. Opt. Soc. Am. A 2000, 17, 2046–2055. [Google Scholar] [CrossRef] [PubMed]
- Martelli, F.; Pifferi, A.; Farina, A.; Amendola, C.; Maffeis, G.; Tommasi, F.; Cavalieri, S.; Spinelli, L.; Torricelli, A. Statistics of maximum photon penetration depth in a two-layer diffusive medium. Biomed. Opt. Express 2024, 15, 1163–1180. [Google Scholar] [CrossRef]
- Geiger, S.; Reitzle, D.; Liemert, A.; Kienle, A. Determination of the optical properties of three-layered turbid media in the time domain using the P 3 approximation. OSA Contin. 2019, 2, 1889–1899. [Google Scholar] [CrossRef]
- Martelli, F.; Sassaroli, A.; Yamada, Y.; Zaccanti, G. Analytical approximate solutions of the time-domain diffusion equation in layered slabs. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2002, 19, 71–80. [Google Scholar] [CrossRef]
- García, H.; Iriarte, D.; Pomarico, J.; Grosenick, D.; Macdonald, R. Retrieval of the optical properties of a semiinfinite compartment in a layered scattering medium by single-distance, time-resolved diffuse reflectance measurements. J. Quant. Spectrosc. Radiat. Transf. 2017, 189, 66–74. [Google Scholar] [CrossRef]
- Wu, M.M.; Chan, S.T.; Mazumder, D.; Tamborini, D.; Stephens, K.A.; Deng, B.; Farzam, P.; Chu, J.Y.; Franceschini, M.A.; Qu, J.Z.; et al. Improved accuracy of cerebral blood flow quantification in the presence of systemic physiology cross-talk using multi-layer Monte Carlo modeling. Neurophotonics 2021, 8, 015001. [Google Scholar] [CrossRef]
- Martelli, F.; Sassaroli, A.; Bianco, S.D.; Yamada, Y.; Zaccanti, G. Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method. Phys. Rev. E 2003, 67, 056623. [Google Scholar] [CrossRef]
- Helton, M. LightPropagation.jl: A Julia Package for Simulating Light Propagation. 2025. Available online: https://github.com/heltonmc/LightPropagation.jl (accessed on 15 March 2025).
- McMurdy, J.; Jay, G.; Suner, S.; Crawford, G. Photonics-based In Vivo total hemoglobin monitoring and clinical relevance. J. Biophotonics 2009, 2, 277–287. [Google Scholar] [CrossRef]
- Prahl, S. Optical Absorption Spectra of Hemoglobin. Oregon Medical Laser Center. 1999. Available online: https://omlc.org/spectra/hemoglobin/summary.html (accessed on 15 October 2023).
- Re, R.; Spinelli, L.; Martelli, F.; Sieno, L.D.; Bargigia, I.; Amendola, C.; Maffeis, G.; Torricelli, A. A review on time domain diffuse optics: Principles and applications on human biological tissues. Riv. Nuovo Cimento 2025, 48, 1–83. [Google Scholar] [CrossRef]
- Vishwanath, K.; Pogue, B.; Mycek, M.A. Quantitative fluorescence lifetime spectroscopy in turbid media: Comparison of theoretical, experimental and computational methods. Phys. Med. Biol. 2002, 47, 3387. [Google Scholar] [CrossRef]
- Vishwanath, K.; Mycek, M.A. Time-resolved photon migration in bi-layered tissue models. Opt. Express 2005, 13, 7466–7482. [Google Scholar] [CrossRef] [PubMed]
- Zonios, G.; Dimou, A. Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: A Monte Carlo study. Biomed. Opt. Express 2011, 2, 3284. [Google Scholar] [CrossRef] [PubMed]
- Calisan, M.; Talu, M.F.; Pimenov, D.Y.; Giasin, K. Skull Thickness Calculation Using Thermal Analysis and Finite Elements. Appl. Sci. 2021, 11, 10483. [Google Scholar] [CrossRef]
- Störchle, P.; Müller, W.; Sengeis, M.; Lackner, S.; Holasek, S.; Fürhapter-Rieger, A. Measurement of mean subcutaneous fat thickness: Eight standardised ultrasound sites compared to 216 randomly selected sites. Sci. Rep. 2018, 8, 16268. [Google Scholar] [CrossRef]
- Mao, J.; Ling, Y.; Xue, P.; Su, Y. Monte Carlo-based full-wavelength simulator of Fourier-domain optical coherence tomography. Biomed. Opt. Express 2022, 13, 6317–6334. [Google Scholar] [CrossRef]
- Wangpraseurt, D.; Jacques, S.L.; Petrie, T.; Kühl, M. Monte Carlo Modeling of Photon Propagation Reveals Highly Scattering Coral Tissue. Front. Plant Sci. 2016, 7, 1404. [Google Scholar] [CrossRef]
- Khan, R.; Gul, B.; Khan, S.; Nisar, H.; Ahmad, I. Refractive index of biological tissues: Review, measurement techniques, and applications. Photodiagnosis Photodyn. Ther. 2021, 33, 102192. [Google Scholar] [CrossRef] [PubMed]
- Dirckx, J.J.J.; Kuypers, L.C.; Decraemer, W.F. Refractive index of tissue measured with confocal microscopy. J. Biomed. Opt. 2005, 10, 044014. [Google Scholar] [CrossRef] [PubMed]
- Bolin, F.P.; Preuss, L.E.; Taylor, R.C.; Ference, R.J. Refractive index of some mammalian tissues using a fiber optic cladding method. Appl. Opt. 1989, 28, 2297–2303. [Google Scholar] [CrossRef]
- Sun, J.; Lee, S.J.; Wu, L.; Sarntinoranont, M.; Xie, H. Refractive index measurement of acute rat brain tissue slices using optical coherence tomography. Opt. Express 2012, 20, 1084–1095. [Google Scholar] [CrossRef]
- Kienle, A. Light diffusion through a turbid parallelepiped. J. Opt. Soc. Am. A 2005, 22, 1883–1888. [Google Scholar] [CrossRef]
- Martelli, F.; Bianco, S.D.; Zaccanti, G. Procedure for retrieving the optical properties of a two-layered medium from time-resolved reflectance measure ments. Opt. Lett. 2003, 28, 1236–1238. [Google Scholar] [CrossRef]
- Martelli, F.; Bianco, S.D.; Zaccanti, G.; Pifferi, A.; Torricelli, A.; Bassi, A.; Taroni, P.; Cubeddu, R. Phantom validation and in vivo application of an inversion procedure for retrieving the optical properties of diffusive layered media from time-resolved reflectance measurements. Opt. Lett. 2004, 29, 2037–2039. [Google Scholar] [CrossRef]
- Rajasekhar, S.; Vishwanath, K. Sensitivity Of Time-Resolved Diffuse Reflectance To Optical Coefficients In Bilayered Tissues. In Proceedings of the Frontiers in Optics + Laser Science 2024 (FiO, LS). Optica Publishing Group, Denver, CO, USA, 23–26 September 2024; p. JW5A. [Google Scholar] [CrossRef]
- Stawschenko, E.; Schaller, T.; Kern, B.; Bode, B.; Dörries, F.; Kusche-Vihrog, K.; Gehring, H.; Wegerich, P. Current Status of Measurement Accuracy for Total Hemoglobin Concentration in the Clinical Context. Biosensors 2022, 12, 1147. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, N.; Kleiser, S.; Ostojic, D.; Karen, T.; Wolf, M. Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy. Biomed. Opt. Express 2016, 7, 4605–4619. [Google Scholar] [CrossRef]
- Dehaes, M.; Grant, P.E.; Sliva, D.D.; Roche-Labarbe, N.; Pienaar, R.; Boas, D.A.; Franceschini, M.A.; Selb, J. Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult. Biomed. Opt. Express 2011, 2, 552–567. [Google Scholar] [CrossRef]
Tissue Model | Layer | A (cm−1) | b | ||
---|---|---|---|---|---|
Head | Top | ||||
Bottom | |||||
Muscle | Top | ||||
Bottom |
Top Layer Error % | Bottom Layer Error % | ||||
---|---|---|---|---|---|
Bilayer DT | Semi-Inf DT | Bilayer DT | Semi-Inf DT | ||
Optical | () | ||||
Coefficients | () | ||||
Functional | (%) | ||||
Endpoints | (μM) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajasekhar, S.; Vishwanath, K. Recovery of Optical Transport Coefficients Using Diffusion Approximation in Bilayered Tissues: A Theoretical Analysis. Photonics 2025, 12, 698. https://doi.org/10.3390/photonics12070698
Rajasekhar S, Vishwanath K. Recovery of Optical Transport Coefficients Using Diffusion Approximation in Bilayered Tissues: A Theoretical Analysis. Photonics. 2025; 12(7):698. https://doi.org/10.3390/photonics12070698
Chicago/Turabian StyleRajasekhar, Suraj, and Karthik Vishwanath. 2025. "Recovery of Optical Transport Coefficients Using Diffusion Approximation in Bilayered Tissues: A Theoretical Analysis" Photonics 12, no. 7: 698. https://doi.org/10.3390/photonics12070698
APA StyleRajasekhar, S., & Vishwanath, K. (2025). Recovery of Optical Transport Coefficients Using Diffusion Approximation in Bilayered Tissues: A Theoretical Analysis. Photonics, 12(7), 698. https://doi.org/10.3390/photonics12070698