Absolute Measurement of Coherent Backscattering Using a Spatial Light Modulator for Coherence Modification
Abstract
1. Introduction
2. Materials and Methods
2.1. Measurement Setup
2.2. Implementation of a Spatial Light Modulator for Coherence Manipulation
2.3. Quartz Glass Samples
2.4. Monte Carlo Simulation
3. Results and Discussion
3.1. Scattering and Stray Light Compensation
3.2. Absolute Measurement
3.3. Comparison of the Measurement Results with Monte Carlo Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akkermans, E.; Wolf, P.E.; Maynard, R. Coherent backscattering of light by disordered media: Analysis of the peak line shape. Phys. Rev. Lett. 1986, 56, 1471. [Google Scholar] [CrossRef]
- Wolf, P.E.; Maret, G. Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 1985, 55, 2696. [Google Scholar] [CrossRef]
- Corey, R.; Kissner, M.; Saulnier, P. Coherent backscattering of light. Am. J. Phys. 1995, 63, 560–564. [Google Scholar] [CrossRef]
- Labeyrie, G.; de Tomasi, F.; Bernard, J.C.; Müller, C.A.; Miniatura, C.; Kaiser, R. Coherent backscattering of light by cold atoms. Phys. Rev. Lett. 1999, 83, 5266. [Google Scholar] [CrossRef]
- Balik, S.; Kulatunga, P.; Sukenik, C.I.; Havey, M.D.; Kupriyanov, D.V.; Sokolov, I.M. Strong-field coherent backscattering of light in ultracold atomic 85Rb. J. Mod. Opt. 2005, 52, 2269–2278. [Google Scholar] [CrossRef]
- Kim, Y.L.; Liu, Y.; Turzhitsky, V.M.; Roy, H.K.; Wali, R.K.; Backman, V. Coherent backscattering spectroscopy. Opt. Lett. 2004, 29, 1906–1908. [Google Scholar] [CrossRef]
- Fazio, B.; Irrera, A.; Pirotta, S.; D’Andrea, C.; Sorbo, S.D.; Faro, M.J.L.; Gucciardi, P.G.; Iatì, M.A.; Saija, R.; Patrini, M.; et al. Coherent backscattering of Raman light. Nat. Photonics 2017, 11, 170–176. [Google Scholar] [CrossRef]
- Akkermans, E.; Wolf, P.E.; Maynard, R.; Maret, G. Theoretical study of the coherent backscattering of light by disordered media. J. Phys. 1988, 49, 77–98. [Google Scholar] [CrossRef]
- Kim, Y.L.; Liu, Y.; Wali, R.K.; Roy, H.K.; Backman, V. Low-coherent backscattering spectroscopy for tissue characterization. Appl. Opt. 2005, 44, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Xu, M. Low-coherence enhanced backscattering beyond diffusion. Opt. Lett. 2008, 33, 1246–1248. [Google Scholar] [CrossRef] [PubMed]
- Hank, P.; Liemert, A.; Kienle, A. Analytical solution of the radiative transfer theory for the coherent backscattering from two-dimensional semi-infinite media. J. Opt. Soc. Am. 2022, 39, 634–642. [Google Scholar] [CrossRef]
- Hank, P.; Liemert, A.; Kienle, A. Analytical solution of the vector radiative transfer equation for the double scattered radiance of semi-infinite media containing polydisperse particle distributions. J. Quant. Spectrosc. Radiat. Transf. 2023, 304, 108605. [Google Scholar] [CrossRef]
- Tishkovets, V.P.; Mishchenko, M.I. Approximate calculation of coherent backscattering for semi-infinite discrete random media. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 139–145. [Google Scholar] [CrossRef]
- Muinonen, K. Coherent backscattering of light by complex random media of spherical scatterers: Numerical solution. Waves Random Media 2004, 14, 365. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis, L.D.; Lacis, A.A. Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering, 1st ed.; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Vellekoop, I.M.; Mosk, A.P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 2007, 32, 2309–2311. [Google Scholar] [CrossRef]
- Gigan, S.; Katz, O.; de Aguiar, H.B.; Andresen, E.R.; Aubry, A.; Bertolotti, J.; Bossy, E.; Bouchet, D.; Brake, J.; Brasselet, S.; et al. Roadmap on wavefront shaping and deep imaging in complex media. J. Phys. Photonics 2022, 4, 042501. [Google Scholar] [CrossRef]
- Goodman, J.W. Speckle Phenomena in Optics: Theory and Applications, 2nd ed.; SPIE: Bellingham, WA, USA, 2020. [Google Scholar]
- Martinez, A.S.; Maynard, R. Faraday effect and multiple scattering of light. Phys. Rev. B 1994, 50, 3714–3732. [Google Scholar] [CrossRef]
- Xu, M. Electric field Monte Carlo simulation of polarized light propagation in turbid media. Opt. Express 2004, 12, 6530–6539. [Google Scholar] [CrossRef]
- Hank, P.; Foschum, F.; Geiger, S.; Kienle, A. Efficient electrical field Monte Carlo simulation of coherent backscattering. J. Quant. Spectrosc. Radiat. Transf. 2022, 287, 108230. [Google Scholar] [CrossRef]
- Poole, L.R.; Venable, D.D.; Campbell, J.W. Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems. Appl. Opt. 1981, 20, 3653–3656. [Google Scholar] [CrossRef]
- Tinet, E.; Avrillier, S.; Tualle, J.M. Fast semianalytical Monte Carlo simulation for time-resolved light propagation in turbid media. J. Opt. Soc. Am. A 1996, 13, 1903–1915. [Google Scholar] [CrossRef]
- Lenke, R.; Maret, G. Multiple scattering of light: Coherent backscattering and transmission. In Scattering in Polymeric and Colloidal Systems; CRC Press: Boca Raton, FL, USA, 2000; pp. 1–73. [Google Scholar]
- Lenke, R.; Tweer, R.; Maret, G. Coherent backscattering of turbid samples containing large Mie spheres. J. Opt. A Pure Appl. Opt. 2002, 4, 293. [Google Scholar] [CrossRef]
- Radosevich, A.J.; Rogers, J.D.; Capoglu, I.R.; Mutyal, N.N.; Pradhan, P.; Backman, V. Open source software for electric field Monte Carlo simulation of coherent backscattering in biological media containing birefringence. J. Biomed. Opt. 2012, 17, 115001. [Google Scholar] [CrossRef]
- Eddowes, M.H.; Mills, T.N.; Delpy, D.T. Monte Carlo simulations of coherent backscatter for identification of the optical coefficients of biological tissues in vivo. Appl. Opt. 1995, 34, 2261–2267. [Google Scholar] [CrossRef]
- Trull, J.; Cuevas, M.; Salud, J.; Cojocaru, C.; López, D.O. Controllable coherent backscattering of light in disordered media filled with liquid crystal. Opt. Lett. 2018, 43, 2300–2303. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pink, K.; Fritzsche, N.; Petzi, M.; Kienle, A.; Foschum, F. Absolute Measurement of Coherent Backscattering Using a Spatial Light Modulator for Coherence Modification. Photonics 2025, 12, 685. https://doi.org/10.3390/photonics12070685
Pink K, Fritzsche N, Petzi M, Kienle A, Foschum F. Absolute Measurement of Coherent Backscattering Using a Spatial Light Modulator for Coherence Modification. Photonics. 2025; 12(7):685. https://doi.org/10.3390/photonics12070685
Chicago/Turabian StylePink, Karsten, Niklas Fritzsche, Manuel Petzi, Alwin Kienle, and Florian Foschum. 2025. "Absolute Measurement of Coherent Backscattering Using a Spatial Light Modulator for Coherence Modification" Photonics 12, no. 7: 685. https://doi.org/10.3390/photonics12070685
APA StylePink, K., Fritzsche, N., Petzi, M., Kienle, A., & Foschum, F. (2025). Absolute Measurement of Coherent Backscattering Using a Spatial Light Modulator for Coherence Modification. Photonics, 12(7), 685. https://doi.org/10.3390/photonics12070685