Enhanced Power Distribution and Symmetry in Terahertz Waveguides Using Graphene-Based Power Dividers
Abstract
1. Introduction
- 1.
- enhanced electrical conductivity in graphene, which improves the material’s plasmonic properties;
- 2.
- modulation of the plasmon’s wavelength and strength, facilitated by an ionic gel gate configuration.
2. Graphene Plasmon-Polariton Mode Characteristics
3. Proposed Structure of Graphene Plasmonic Divider
Simulation Methodology
4. Results and Discussion
Experimental Feasibility and Challenges
- 1.
- Material Synthesis and Availability: The primary material utilized in our design is graphene, which has become increasingly accessible due to advancements in synthesis techniques such as chemical vapor deposition (CVD) and liquid-phase exfoliation. These methods enable the production of high-quality graphene sheets suitable for integration into photonic devices. However, ensuring uniformity and scalability during fabrication remains a significant challenge that must be overcome.
- 2.
- Integration with Existing Photonic Technologies: Our design aims to leverage graphene’s unique plasmonic properties within existing terahertz systems. Integrating these devices with conventional silicon-based photonic platforms could enhance their practical application. Nevertheless, achieving efficient coupling between graphene and traditional materials poses challenges, particularly in minimizing losses at the interfaces.
- 3.
- Fabrication Techniques: The fabrication of nanoscale structures, as proposed in our simulations, necessitates precise lithography techniques. Current methods, such as electron-beam lithography (EBL) or nanoimprint lithography, can achieve the required resolutions but are often time-consuming and costly. Developing more efficient and cost-effective fabrication processes will be essential for practical applications.
- 4.
- Characterization and Testing Protocols: Once fabricated, it is crucial to characterize the performance of these devices under operational conditions. This includes measuring transmission efficiency and power distribution while assessing the impact of environmental factors such as temperature and humidity on device performance. Establishing robust testing protocols will be necessary to validate simulation results and ensure reliability.
- 5.
- Future Research Directions: While our study lays a solid foundation for theoretical exploration, further research is needed to address these challenges comprehensively. Future work could focus on prototyping physical devices based on our simulations, followed by iterative testing and optimization using empirical data. This will not only validate our findings but also contribute to refining the design for practical applications.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, B.C.; Yu, P.; Liao, Z.; Zhu, F.; Luo, G.Q. A compact filtering power divider based on spoof surface plasmon polaritons and substrate integrated waveguide. IEEE Microw. Wirel. Components Lett. 2021, 32, 101–104. [Google Scholar] [CrossRef]
- Xu, H.T.; Guan, D.F.; Yang, Z.B.; Zhang, Q.; Liu, L.; Xu, S.; Yong, S.W. An ultra-wideband out-of-phase power divider based on odd-mode spoof surface plasmon polariton. Int. J. Microw. Comput. Eng. 2021, 31, e22583. [Google Scholar] [CrossRef]
- Uqaili, J.A.; Qi, L.; Memon, K.A.; Bilal, H.M.; Memon, S.; Khan, H.A.; Uqaili, R.S.; Soomro, F.B. Research on spoof surface plasmon polaritons (SPPs) at microwave frequencies: A bibliometric review. Plasmonics 2022, 17, 1203–1230. [Google Scholar] [CrossRef]
- Feng, Y.; Cao, L.; Zhang, Y. Design of compact terahertz surface plasmon polaritons devices. IEEE J. Sel. Top. Quantum Electron. 2020, 27, 1–5. [Google Scholar] [CrossRef]
- Kim, J.T.; Choi, S.-Y. Graphene-based plasmonic waveguides for photonic integrated circuits. Opt. Express 2011, 19, 24557–24562. [Google Scholar] [CrossRef]
- Nobre, F.D.; Silva-Santos, S.D.; da Silva, M.W.B.; Hernandez-Figueroa, H.E.; Melo, G.; Castro, W. Graphene-based multifunctional signal divider in THz region. Photonics Nanostruct.-Fundam. Appl. 2023, 54, 101115. [Google Scholar] [CrossRef]
- Liao, Z.; Xu, K.D.; Ma, H.; Ma, Z. Plasmonic Metamaterials and Electromagnetic Devices. Front. Phys. 2022, 10, 955715. [Google Scholar]
- Shi, X.; Yang, W.; Xing, H.; Chen, X. Design of power splitters based on hybrid plasmonic waveguides. Appl. Sci. 2021, 11, 8644. [Google Scholar] [CrossRef]
- Benetou, M.I.; Tsakmakidis, K.L. Polarization Controllable Beam-Splitter and Wavelength Router using a Plasmonic Metasurface. Integr. Photonics Res. Silicon Nanophotonics 2021, 5, 11070–11078. [Google Scholar]
- Unutmaz, M.A.; Unlu, M. Spoof surface plasmon polariton delay lines for terahertz phase shifters. J. Light. Technol. 2021, 39, 3187–3192. [Google Scholar] [CrossRef]
- Benetou, M.I.; Tsakmakidis, K.L. Light-alignment controllable beam splitter and vectorial displacement sensor in the stopped-light regime of plasmonic metasurfaces. ACS Photonics 2020, 8, 296–306. [Google Scholar] [CrossRef]
- Elser, J.; Govyadinov, A.A.; Avrutsky, I.; Salakhutdinov, I.; Podolskiy, V.A. Plasmonic nanolayer composites: Coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation. J. Nanomater. 2007, 2007, 079469. [Google Scholar] [CrossRef]
- Pendry, J.; Martin-Moreno, L.; Garcia-Vidal, F. Mimicking surface plasmons with structured surfaces. Science 2004, 305, 847–848. [Google Scholar] [CrossRef] [PubMed]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Fedyanin, D.Y.; Krasavin, A.V.; Arsenin, A.V.; Zayats, A.V. Lasing at the nanoscale: Coherent emission of surface plasmons by an electrically driven nanolaser. Nanophotonics 2020, 9, 3965–3975. [Google Scholar] [CrossRef]
- Zhou, X.L.; Yang, Y.; Wang, S.; Liu, X.W. urface plasmon resonance microscopy: From single-molecule sensing to single-cell imaging. Angew. Chem. Int. Ed. 2020, 59, 1776–1785. [Google Scholar] [CrossRef]
- Wang, D.; Loo, J.F.C.; Chen, J.; Yam, Y.; Chen, S.C.; He, H.; Kong, S.K.; Ho, H.P. Recent advances in surface plasmon resonance imaging sensors. Sensors 2019, 19, 1266. [Google Scholar] [CrossRef]
- Duan, Q.; Liu, Y.; Chang, S.; Chen, H.; Chen, J.-h. Surface plasmonic sensors: Sensing mechanism and recent applications. Sensors 2021, 21, 5262. [Google Scholar] [CrossRef]
- Balandin, A.A. Phononics of graphene and related materials. ACS Nano 2020, 14, 5170–5178. [Google Scholar] [CrossRef]
- Guo, F.; Shen, X.; Zhou, J.; Liu, D.; Zheng, Q.; Yang, J.; Jia, B.; Lau, A.K.; Kim, J.K. Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets. Adv. Funct. Mater. 2020, 30, 1910826. [Google Scholar] [CrossRef]
- Costa, M.C.; Marangoni, V.S.; Ng, P.R.; Nguyen, H.T.; Carvalho, A.; Castro Neto, A.H. Accelerated synthesis of graphene oxide from graphene. Nanomaterials 2021, 11, 551. [Google Scholar] [CrossRef] [PubMed]
- Nematzadeh, M.; Nangir, M.; Massoudi, A.; Ji, X.; Khanlarkhani, A.; Toth, J. Electrochemical Performance of Nitrogen-Doped Graphene/Silicene Composite as a Pseudocapacitive Anode for Lithium-ion Battery. ChemistrySelect 2022, 7, e202104012. [Google Scholar] [CrossRef]
- Bullock, C.J.; Bussy, C. Biocompatibility considerations in the design of graphene biomedical materials. Adv. Mater. Interfaces 2019, 6, 1900229. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, Y.Y.; Zhang, K.; Wu, H.W.; Peng, R.W.; Fan, R.H.; Wang, M. Plasmonic band structures in doped graphene tubes. Opt. Express 2017, 25, 12081–12089. [Google Scholar] [CrossRef] [PubMed]
- Olabi, A.G.; Abdelkareem, M.A.; Wilberforce, T.; Sayed, E.T. Application of graphene in energy storage device–A review. Renew. Sustain. Energy Rev. 2021, 135, 110026. [Google Scholar] [CrossRef]
- Wang, B.; Ruan, T.; Chen, Y.; Jin, F.; Peng, L.; Zhou, Y.; Wang, D.; Dou, S. Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 2020, 24, 22–51. [Google Scholar] [CrossRef]
- Li, G.; Semenenko, V.; Perebeinos, V.; Liu, P.Q. Multilayer graphene terahertz plasmonic structures for enhanced frequency tuning range. ACS Photonics 2019, 6, 3180–3185. [Google Scholar] [CrossRef]
- Crassee, I.; Levallois, J.; Walter, A.L.; Ostler, M.; Bostwick, A.; Rotenberg, E.; Seyller, T.; Van Der Marel, D.; Kuzmenko, A.B. Giant Faraday rotation in single-and multilayer graphene. Nat. Phys. 2011, 7, 48–51. [Google Scholar] [CrossRef]
- Tamagnone, M.; Gomez-Diaz, J.; Mosig, J.R.; Perruisseau-Carrier, J. Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Appl. Phys. Lett. 2012, 101, 214102. [Google Scholar] [CrossRef]
- Koppens, F.H.; Chang, D.E.; de Abajo, F.J.G. Graphene plasmonics: A platform for strong light–matter interactions. Nano Lett. 2011, 11, 3370–3377. [Google Scholar] [CrossRef]
- Shao, L.; Zhu, W. Graphene-derived microwave metamaterials and meta-devices: Emerging applications and properties. Electron 2024, e60. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, J.; Liu, L.; He, C.; Zhu, W. Graphene-based optically transparent metasurface for microwave and terahertz cross-band stealth utilizing multiple stealth strategies. Carbon 2024, 219, 118833. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Q.; Xia, L.; Li, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Han, J.; Zhang, W. Terahertz surface plasmonic waves: A review. Adv. Photonics 2020, 2, 014001. [Google Scholar] [CrossRef]
- Nikitin, A.Y.; Guinea, F.; García-Vidal, F.; Martín-Moreno, L. Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys. Rev. B 2011, 84, 161407. [Google Scholar] [CrossRef]
- Pakniyat, S.; Jam, S.; Yahaghi, A.; Hanson, G.W. Reflectionless plasmonic right-angled waveguide bend and divider using graphene and transformation optics. Opt. Express 2021, 29, 9589–9598. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, M.; Sorianello, V.; Midrio, M.; Koppens, F.H.; Huyghebaert, C.; Neumaier, D.; Galli, P.; Templ, W.; D’Errico, A.; Ferrari, A.C. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 2018, 3, 392–414. [Google Scholar] [CrossRef]
- Maleki, M.; Soroosh, M.; Akbarizadeh, G. A subwavelength graphene surface plasmon polariton-based decoder. Diam. Relat. Mater. 2023, 134, 109780. [Google Scholar] [CrossRef]
- Kowerdziej, R.; Jaroszewicz, L. Active control of terahertz radiation using a metamaterial loaded with a nematic liquid crystal. Liq. Cryst. 2016, 43, 1120–1125. [Google Scholar] [CrossRef]
- Lu, C.; Lu, Q.; Gao, M.; Lin, Y. Dynamic manipulation of THz waves enabled by phase-transition VO2 thin film. Nanomaterials 2021, 11, 114. [Google Scholar] [CrossRef] [PubMed]
- Jahromi, H.D.; Lotfiani, A. A Fast and Sensitive Schottky Photodiode With Surface Plasmon Enhanced Photocurrent and Extremely Low Dark Current for High-Frequency Applications in Near-Infrared. IEEE Sens. J. 2022, 22, 20430–20437. [Google Scholar] [CrossRef]
- Lotfiani, A.; Jahromi, H.D.; Hamedi, S. Monolithic silicon-based photovoltaic-nanoplasmonic biosensor with enhanced limit of detection and minimum detectable power. J. Light. Technol. 2022, 40, 1231–1237. [Google Scholar] [CrossRef]
- Lotfiani, A.; Jahromi, H.D. Guided-Mode Resonance Enhanced Ge-on-Si Self-powered Surface illuminated Photodetector for Ultra-High-Speed Optical Communication Systems. IEEE Sens. J. 2024. [Google Scholar] [CrossRef]
- Doriani, M.; Jahromi, H.D.; Sheikhi, M.H. A highly efficient thin film CuInGaSe2 solar cell. J. Sol. Energy Eng. 2015, 137, 064501. [Google Scholar] [CrossRef]
- Jahromi, H.D. Germanium-incorporated Si-Ge-Si heterojunction phototransistors for a high-limit of detection and wide linear dynamic range near-infrared light detection. Opt. Express 2024, 32, 43475–43489. [Google Scholar] [CrossRef]
- Gomaa, W.; Smith, R.L.; Esmaeilsabzali, H.; Darcie, T.E. Terahertz power divider using symmetric CPS transmission line on a thin membrane. IEEE Access 2020, 8, 214425–214433. [Google Scholar] [CrossRef]
- Wang, W.-Y.; Ren, H.; Xu, Z.-H.; Chen, H.; Li, Y.; Xu, S. Integrated terahertz topological valley-locked power divider with arbitrary power ratios. Opt. Lett. 2024, 49, 5579–5582. [Google Scholar] [CrossRef]
- Su, W.; Geng, Z. Terahertz all-optical logic gates based on a graphene nanoribbon rectangular ring resonator. IEEE Photonics J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Azar, M.T.H.; Zavvari, M.; Zehforoosh, Y.; Mohammadi, P. Graphene plasmonic crystal: Two-dimensional gate-controlled chemical potential for creation of photonic bandgap. Plasmonics 2020, 15, 975–983. [Google Scholar] [CrossRef]
- Mohammadi, G.; Orouji, A.A.; Danaie, M. Highly selective single-mode graphene bandpass filter based on Wilkinson power divider structure. Diam. Relat. Mater. 2024, 145, 111141. [Google Scholar] [CrossRef]
Structure | Operating Frequency (THz) | Transmission Efficiency (%) | (eV) | Ref |
---|---|---|---|---|
Graphene Nanoribbon Rectangular Ring Resonator | 21 | 0.83 | 0.25–0.35 | [47] |
Graphene Plasmonic Crystal | 31 | 0.99 | 0.1–0.5 | [48] |
Graphene on Power Divider Structure | 15 | 0.95 | 0.3–0.9 | [49] |
Graphene-on-Insulator | 33.4 | 0.57 | 0.1–0.5 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Honarmand, A.; Jahromi, H.D.; Maesoumi, M.; Jabbari, M.; Pesaran, F. Enhanced Power Distribution and Symmetry in Terahertz Waveguides Using Graphene-Based Power Dividers. Photonics 2025, 12, 658. https://doi.org/10.3390/photonics12070658
Honarmand A, Jahromi HD, Maesoumi M, Jabbari M, Pesaran F. Enhanced Power Distribution and Symmetry in Terahertz Waveguides Using Graphene-Based Power Dividers. Photonics. 2025; 12(7):658. https://doi.org/10.3390/photonics12070658
Chicago/Turabian StyleHonarmand, Amin, Hamed Dehdashti Jahromi, Mohsen Maesoumi, Masoud Jabbari, and Farshad Pesaran. 2025. "Enhanced Power Distribution and Symmetry in Terahertz Waveguides Using Graphene-Based Power Dividers" Photonics 12, no. 7: 658. https://doi.org/10.3390/photonics12070658
APA StyleHonarmand, A., Jahromi, H. D., Maesoumi, M., Jabbari, M., & Pesaran, F. (2025). Enhanced Power Distribution and Symmetry in Terahertz Waveguides Using Graphene-Based Power Dividers. Photonics, 12(7), 658. https://doi.org/10.3390/photonics12070658