Optical Fiber-Based Structural Health Monitoring: Advancements, Applications, and Integration with Artificial Intelligence for Civil and Urban Infrastructure
Abstract
:1. Introduction
2. Fundamentals of OFSs
3. Applications of OFSs in SHM
3.1. Bridges
3.2. Tunnels
3.3. Buildings and Skyscrapers
3.4. Dams and Pipelines
3.5. Offshore Platforms and Wind Turbines
4. Challenges and Limitations
5. Integration with AI
6. Role of SHM in Civil and Urban Infrastructures
7. Future Trends and Research Opportunities
8. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wang, G.; Ke, J. Literature Review on the Structural Health Monitoring (SHM) of Sustainable Civil Infrastructure: An Analysis of Influencing Factors in the Implementation. Buildings 2024, 14, 402. [Google Scholar] [CrossRef]
- Ye, X.W.; Su, Y.H.; Han, J.P. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review. Sci. World J. 2014, 2014, 652329. [Google Scholar] [CrossRef]
- Abdoli, F.; Rashidi, M.; Wang, J.; Siddique, R.; Nasir, V. Structural Health Monitoring of Timber Bridges—A Review. Results Eng. 2024, 24, 103084. [Google Scholar] [CrossRef]
- Rădulescu, V.M.; Rădulescu, G.M.T.; Naș, S.M.; Rădulescu, A.T.; Rădulescu, C.M. Structural Health Monitoring of Bridges under the Influence of Natural Environmental Factors and Geomatic Technologies: A Literature Review and Bibliometric Analysis. Buildings 2024, 14, 2811. [Google Scholar] [CrossRef]
- Hui, L.; Jinping, O. Structural Health Monitoring: From Sensing Technology Stepping to Health Diagnosis. Procedia Eng. 2011, 14, 753–760. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Y.; Yang, X. An Integrated System for Building Structural Health Monitoring and Early Warning Based on an Internet of Things Approach. Int. J. Distrib. Sens. Netw. 2017, 13, 1550147716689101. [Google Scholar] [CrossRef]
- Gomez, J.; Zubia, J.; Aranguren, G.; Arrue, J.; Poisel, H.; Saez, I. Comparing Polymer Optical Fiber, Fiber Bragg Grating, and Traditional Strain Gauge for Aircraft Structural Health Monitoring. Appl. Opt. AO 2009, 48, 1436–1443. [Google Scholar] [CrossRef]
- Gharehbaghi, V.R.; Noroozinejad Farsangi, E.; Noori, M.; Yang, T.Y.; Li, S.; Nguyen, A.; Málaga-Chuquitaype, C.; Gardoni, P.; Mirjalili, S. A Critical Review on Structural Health Monitoring: Definitions, Methods, and Perspectives. Arch. Comput. Methods Eng. 2022, 29, 2209–2235. [Google Scholar] [CrossRef]
- Jo, H.; Sim, S.H.; Mechitov, K.A.; Kim, R.; Li, J.; Moinzadeh, P.; Spencer, B.F., Jr.; Park, J.W.; Cho, S.; Jung, H.J.; et al. Hybrid Wireless Smart Sensor Network for Full-Scale Structural Health Monitoring of a Cable-Stayed Bridge. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011, San Diego, CA, USA, 13 April 2011; Volume 7981, pp. 45–59. [Google Scholar]
- Mardanshahi, A.; Sreekumar, A.; Yang, X.; Barman, S.K.; Chronopoulos, D. Sensing Techniques for Structural Health Monitoring: A State-of-the-Art Review on Performance Criteria and New-Generation Technologies. Sensors 2025, 25, 1424. [Google Scholar] [CrossRef]
- Warsi, Z.H.; Irshad, S.M.; Khan, F.; Shahbaz, M.A.; Junaid, M.; Amin, S.U. Sensors for Structural Health Monitoring: A Review. In Proceedings of the 2019 Second International Conference on Latest trends in Electrical Engineering and Computing Technologies (INTELLECT), Karachi, Pakistan, 13–14 November 2019; pp. 1–6. [Google Scholar]
- Fawad, M.; Salamak, M.; Poprawa, G.; Koris, K.; Jasinski, M.; Lazinski, P.; Piotrowski, D.; Hasnain, M.; Gerges, M. Automation of Structural Health Monitoring (SHM) System of a Bridge Using BIMification Approach and BIM-Based Finite Element Model Development. Sci. Rep. 2023, 13, 13215. [Google Scholar] [CrossRef]
- Bremer, K.; Wollweber, M.; Weigand, F.; Rahlves, M.; Kuhne, M.; Helbig, R.; Roth, B. Fibre Optic Sensors for the Structural Health Monitoring of Building Structures. Procedia Technol. 2016, 26, 524–529. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Advancing Frontiers: Semiconductor Fibers in Modern Technology. Opt. Commun. 2024, 560, 130495. [Google Scholar] [CrossRef]
- Yang, F.; Zhu, K.; Yu, X.; Liu, T.; Lu, K.; Wang, Z.; Li, Y. Air Gap Fiber Bragg Grating for Simultaneous Strain and Temperature Measurement. Micromachines 2024, 15, 140. [Google Scholar] [CrossRef] [PubMed]
- Advanced Fiber Optic DTS & Monitoring Systems. Available online: https://www.sensornet.co.uk/ (accessed on 9 August 2023).
- Muanenda, Y.; Oton, C.J.; Di Pasquale, F. Application of Raman and Brillouin Scattering Phenomena in Distributed Optical Fiber Sensing. Front. Phys. 2019, 7, 155. [Google Scholar] [CrossRef]
- Butt, M.A.; Voronkov, G.S.; Grakhova, E.P.; Kutluyarov, R.V.; Kazanskiy, N.L.; Khonina, S.N. Environmental Monitoring: A Comprehensive Review on Optical Waveguide and Fiber-Based Sensors. Biosensors 2022, 12, 1038. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Li, B.; Wan, L.; Wang, L. Fault Diagnosis of Fiber Optic Current Sensor Induced by Light Source Based on Support Vector Machines. In Proceedings of the International Conference on Electronic Information Technology (EIT 2022), Chengdu, China, 23 May 2022; Volume 12254, p. 1225402. [Google Scholar]
- Bado, M.F.; Casas, J.R. A Review of Recent Distributed Optical Fiber Sensors Applications for Civil Engineering Structural Health Monitoring. Sensors 2021, 21, 1818. [Google Scholar] [CrossRef]
- Plevris, V.; Papazafeiropoulos, G. AI in Structural Health Monitoring for Infrastructure Maintenance and Safety. Infrastructures 2024, 9, 225. [Google Scholar] [CrossRef]
- Shibu, M.; Kumar, K.P.; Pillai, V.J.; Murthy, H.; Chandra, S. Structural Health Monitoring Using AI and ML Based Multimodal Sensors Data. Meas. Sens. 2023, 27, 100762. [Google Scholar] [CrossRef]
- Keshmiry, A.; Hassani, S.; Dackermann, U. 5–AI-Based Structural Health Monitoring Systems. In Artificial Intelligence Applications for Sustainable Construction; Nehdi, M.L., Arora, H.C., Kumar, K., Damaševičius, R., Kumar, A., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Sawston, UK, 2024; pp. 151–170. ISBN 9780443131912. [Google Scholar]
- Mondal, T.G.; Chen, G. Artificial Intelligence in Civil Infrastructure Health Monitoring—Historical Perspectives, Current Trends, and Future Visions. Front. Built Environ. 2022, 8, 1007886. [Google Scholar] [CrossRef]
- Bogatinoska, D.C.; Malekian, R.; Trengoska, J.; Nyako, W.A. Advanced Sensing and Internet of Things in Smart Cities. In Proceedings of the 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 30 May–3 June 2016; pp. 632–637. [Google Scholar]
- Scuro, C.; Lamonaca, F.; Porzio, S.; Milani, G.; Olivito, R.S. Internet of Things (IoT) for Masonry Structural Health Monitoring (SHM): Overview and Examples of Innovative Systems. Constr. Build. Mater. 2021, 290, 123092. [Google Scholar] [CrossRef]
- Vijayan, D.S.; Sivasuriyan, A.; Devarajan, P.; Krejsa, M.; Chalecki, M.; Żółtowski, M.; Kozarzewska, A.; Koda, E. Development of Intelligent Technologies in SHM on the Innovative Diagnosis in Civil Engineering—A Comprehensive Review. Buildings 2023, 13, 1903. [Google Scholar] [CrossRef]
- Jayawickrema, U.M.N.; Herath, H.M.C.M.; Hettiarachchi, N.K.; Sooriyaarachchi, H.P.; Epaarachchi, J.A. Fibre-Optic Sensor and Deep Learning-Based Structural Health Monitoring Systems for Civil Structures: A Review. Measurement 2022, 199, 111543. [Google Scholar] [CrossRef]
- Min, R.; Liu, Z.; Pereira, L.; Yang, C.; Sui, Q.; Marques, C. Optical Fiber Sensing for Marine Environment and Marine Structural Health Monitoring: A Review. Opt. Laser Technol. 2021, 140, 107082. [Google Scholar] [CrossRef]
- Soman, R.; Wee, J.; Peters, K. Optical Fiber Sensors for Ultrasonic Structural Health Monitoring: A Review. Sensors 2021, 21, 7345. [Google Scholar] [CrossRef]
- Ballato, J.; Hawkins, T.; Foy, P.; Stolen, R.; Kokuoz, B.; Ellison, M.; McMillen, C.; Reppert, J.; Rao, A.M.; Daw, M.; et al. Silicon Optical Fiber. Opt. Express 2008, 16, 18675. [Google Scholar] [CrossRef]
- Ballato, J.; Hawkins, T.; Foy, P.; Yazgan-Kokuoz, B.; Stolen, R.; McMillen, C.; Hon, N.K.; Jalali, B.; Rice, R. Glass-Clad Single-Crystal Germanium Optical Fiber. Opt. Express OE 2009, 17, 8029–8035. [Google Scholar] [CrossRef]
- Xu, S.; Li, X.; Wang, T.; Wang, X.; Liu, H. Fiber Bragg Grating Pressure Sensors: A Review. OE 2023, 62, 010902. [Google Scholar] [CrossRef]
- Yu, Y.-L.; Hong, Y.-H.; Chen, Y.-H.; Kishikawa, H.; Oguchi, K. Investigation of Silicon Core-Based Fiber Bragg Grating for Simultaneous Detection of Temperature and Refractive Index. Sensors 2023, 23, 3936. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Lalam, N.; Badar, M.; Liu, B.; Chorpening, B.T.; Buric, M.P.; Ohodnicki, P.R. Distributed Optical Fiber Sensing: Review and Perspective. Appl. Phys. Rev. 2019, 6, 041302. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M. Physics and Applications of Raman Distributed Optical Fiber Sensing. Light. Sci. Appl. 2022, 11, 128. [Google Scholar] [CrossRef]
- Ukil, A.; Braendle, H.; Krippner, P. Distributed Temperature Sensing: Review of Technology and Applications. IEEE Sens. J. 2012, 12, 885–892. [Google Scholar] [CrossRef]
- Tye, C.S.; Ehrlich, K.; Green, A.D.M.; Henderson, R.K.; Tanner, M.G. Photon Counting Fibre Optic Distributed Temperature Sensing with a CMOS SPAD Array. Opt. Express 2024, 32, 6481–6493. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Liu, Q. Optical Fiber Distributed Acoustic Sensors: A Review. J. Light. Technol. 2021, 39, 3671–3686. [Google Scholar] [CrossRef]
- Cao, W.; Cheng, G. Experimental Research on Signal Sensing of Distributed Acoustic Sensing Optical Fiber Based on Φ-OTDR in Shallow Water. Wave Motion 2024, 126, 103264. [Google Scholar] [CrossRef]
- Zeni, L.; Picarelli, L.; Avolio, B.; Coscetta, A.; Papa, R.; Zeni, G.; Di Maio, C.; Vassallo, R.; Minardo, A. Brillouin Optical Time-Domain Analysis for Geotechnical Monitoring. J. Rock. Mech. Geotech. Eng. 2015, 7, 458–462. [Google Scholar] [CrossRef]
- Zhou, D.-P.; Peng, W.; Chen, L.; Bao, X. Brillouin Optical Time-Domain Analysis via Compressed Sensing. Opt. Lett. OL 2018, 43, 5496–5499. [Google Scholar] [CrossRef]
- Minardo, A.; Catalano, E.; Coscetta, A.; Zeni, G.; Di Maio, C.; Vassallo, R.; Picarelli, L.; Coviello, R.; Macchia, G.; Zeni, L. Long-Term Monitoring of a Tunnel in a Landslide Prone Area by Brillouin-Based Distributed Optical Fiber Sensors. Sensors 2021, 21, 7032. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, Y.H.; Park, K.S.; Eom, J.B.; Kim, M.J.; Rho, B.S.; Choi, H.Y. Interferometric Fiber Optic Sensors. Sensors 2012, 12, 2467–2486. [Google Scholar] [CrossRef]
- Shatalin, S.V.; Treschikov, V.N.; Rogers, A.J. Interferometric Optical Time-Domain Reflectometry for Distributed Optical-Fiber Sensing. Appl. Opt. AO 1998, 37, 5600–5604. [Google Scholar] [CrossRef]
- Ülgen, O.; Shnaiderman, R.; Zakian, C.; Ntziachristos, V. Interferometric Optical Fiber Sensor for Optoacoustic Endomicroscopy. J. Biophotonics 2021, 14, e202000501. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Butt, M.A. Optical Fibre-Based Sensors—An Assessment of Current Innovations. Biosensors 2023, 13, 835. [Google Scholar] [CrossRef] [PubMed]
- Abdalwareth, A.; Flachenecker, G.; Angelmahr, M.; Schade, W. Optical Fiber Evanescent Hydrogen Sensor Based on Palladium Nanoparticles Coated Bragg Gratings. Sens. Actuators A Phys. 2023, 361, 114594. [Google Scholar] [CrossRef]
- Mao, G.; Yuan, T.; Guan, C.; Yang, J.; Chen, L.; Zhu, Z.; Shi, J.; Yuan, L. Fiber Bragg Grating Sensors in Hollow Single- and Two-Core Eccentric Fibers. Opt. Express OE 2017, 25, 144–150. [Google Scholar] [CrossRef]
- Li, L.; Xia, L.; Xie, Z.; Liu, D. All-Fiber Mach-Zehnder Interferometers for Sensing Applications. Opt. Express OE 2012, 20, 11109–11120. [Google Scholar] [CrossRef]
- Zhang, A.; Li, D.; Pan, H.; Bin, H. Mach–Zehnder Fiber Sensing and Positioning System Based on Common Optical Path Technology. Appl. Opt. AO 2019, 58, 3454–3458. [Google Scholar] [CrossRef]
- Bonopera, M. Fiber-Bragg-Grating-Based Displacement Sensors: Review of Recent Advances. Materials 2022, 15, 5561. [Google Scholar] [CrossRef] [PubMed]
- Acharya, A.; Kogure, T. Advances in Fibre-Optic-Based Slope Reinforcement Monitoring: A Review. J. Rock. Mech. Geotech. Eng. 2025, 17, 1263–1284. [Google Scholar] [CrossRef]
- Anjana, K.; Herath, M.; Epaarachchi, J. Optical Fibre Sensors for Geohazard Monitoring—A Review. Measurement 2024, 235, 114846. [Google Scholar] [CrossRef]
- Kara De Maeijer, P.; Luyckx, G.; Vuye, C.; Voet, E.; Van den bergh, W.; Vanlanduit, S.; Braspenninckx, J.; Stevens, N.; De Wolf, J. Fiber Optics Sensors in Asphalt Pavement: State-of-the-Art Review. Infrastructures 2019, 4, 36. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Lu, Y.; Wei, J.; Kanungo, D.P. Application of Distributed Optical Fiber Sensing Technique in Monitoring the Ground Deformation. J. Sens. 2017, 2017, 6310197. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, R.; Tian, Y.; Lu, J.; Duan, K.; Wang, C. Road-Use Optical Fiber Sensors: Structural Design Optimization and Perception Performance. Adv. Civ. Eng. 2025, 2025, 7117229. [Google Scholar] [CrossRef]
- Wang, J.; Han, Y.; Cao, Z.; Xu, X.; Zhang, J.; Xiao, F. Applications of Optical Fiber Sensor in Pavement Engineering: A Review. Constr. Build. Mater. 2023, 400, 132713. [Google Scholar] [CrossRef]
- Braunfelds, J.; Senkans, U.; Skels, P.; Murans, I.; Porins, J.; Spolitis, S.; Bobrovs, V. Fiber Bragg Grating Optical Sensors for Road Infrastructure Monitoring Applications. In Technical Digest Series, Proceedings of the Applied Industrial Optics (AIO), Dublin, Ireland, 25–27 July 2022; Optica Publishing Group: Washington, DC, USA, 2022; p. W1A.2. [Google Scholar]
- Sasy Chan, Y.W.; Wang, H.-P.; Xiang, P. Optical Fiber Sensors for Monitoring Railway Infrastructures: A Review towards Smart Concept. Symmetry 2021, 13, 2251. [Google Scholar] [CrossRef]
- Du, C.; Dutta, S.; Kurup, P.; Yu, T.; Wang, X. A Review of Railway Infrastructure Monitoring Using Fiber Optic Sensors. Sens. Actuators A Phys. 2020, 303, 111728. [Google Scholar] [CrossRef]
- Zhang, G.; Song, Z.; Osotuyi, A.G.; Lin, R.; Chi, B. Railway Traffic Monitoring with Trackside Fiber-Optic Cable by Distributed Acoustic Sensing Technology. Front. Earth Sci. 2022, 10, 990837. [Google Scholar] [CrossRef]
- Muñoz, F.; Urricelqui, J.; Soto, M.A.; Jimenez-Rodriguez, M. Finding Well-Coupled Optical Fiber Locations for Railway Monitoring Using Distributed Acoustic Sensing. Sensors 2023, 23, 6599. [Google Scholar] [CrossRef]
- Minardo, A.; Zeni, L.; Coscetta, A.; Catalano, E.; Zeni, G.; Damiano, E.; De Cristofaro, M.; Olivares, L. Distributed Optical Fiber Sensor Applications in Geotechnical Monitoring. Sensors 2021, 21, 7514. [Google Scholar] [CrossRef]
- He, J.; Hu, X.; Zhang, D.; Kong, Y.; Cheng, J.; Xiao, W. Semi-Supervised Learning for Optical Fiber Sensor Road Intrusion Signal Detection. Appl. Opt. AO 2022, 61, C65–C72. [Google Scholar] [CrossRef] [PubMed]
- Guillen-Ruiz, L.E.; Camas-Anzueto, J.L.; Anzueto-Sánchez, G.; Perez, J.G. Identification of Structured Optical Fibers with Adequate Sensitivity and Range for Displacement Sensors in Structural Health Monitoring Applications. In Technical Digest Series, Proceedings of the Optica Latin America Optics and Photonics Conference (LAOP), Puerto Vallarta, Mexico, 10–14 November 2024; Optica Publishing Group: Washington, DC, USA, 2024; p. W4A.18. [Google Scholar]
- Lightweight Fiber Optic Sensors for Real-Time Monitoring of Structural Health|T2 Portal. Available online: https://technology.nasa.gov/patent/DRC-TOPS-9 (accessed on 23 April 2025).
- Leal-Junior, A.; Díaz, C.; Frizera, A.; Lee, H.; Nakamura, K.; Mizuno, Y.; Marques, C. Highly Sensitive Fiber-Optic Intrinsic Electromagnetic Field Sensing. Adv. Photonics Res. 2021, 2, 2000078. [Google Scholar] [CrossRef]
- Gómez, J.; Casas, J.R.; Villalba, S. Structural Health Monitoring with Distributed Optical Fiber Sensors of Tunnel Lining Affected by Nearby Construction Activity. Autom. Constr. 2020, 117, 103261. [Google Scholar] [CrossRef]
- Alj, I.; Quiertant, M.; Khadour, A.; Grando, Q.; Benzarti, K. Durability of Distributed Optical Fiber Sensors Used for SHM of Reinforced Concrete Structures. Struct. Health Monit. 2019. [Google Scholar] [CrossRef]
- An Analysis of Cost-Effectiveness of Optical Technology. Available online: https://www.hbm.com/en/9280/cost-effectiveness-of-optical-technology/?product_type_no=An%20Analysis%20of%20Cost-Effectiveness%20of%20Optical%20Technology (accessed on 23 April 2025).
- Abdhul Rahuman, M.A.; Kahatapitiya, N.S.; Amarakoon, V.N.; Wijenayake, U.; Silva, B.N.; Jeon, M.; Kim, J.; Ravichandran, N.K.; Wijesinghe, R.E. Recent Technological Progress of Fiber-Optical Sensors for Bio-Mechatronics Applications. Technologies 2023, 11, 157. [Google Scholar] [CrossRef]
- Di Nuzzo, F.; Brunelli, D.; Polonelli, T.; Benini, L. Structural Health Monitoring System with Narrowband IoT and MEMS Sensors. IEEE Sens. J. 2021, 21, 16371–16380. [Google Scholar] [CrossRef]
- Miyatake, R.; Katsurai, H.; Fukada, Y.; Sekiguchi, M.; Yoshida, T. Ultra-Low-Power Optical Network Unit Driven by Optical Power Supply Using Single-Mode Fiber. IEEE Photonics Technol. Lett. 2023, 35, 874–877. [Google Scholar] [CrossRef]
- Maaskant, R.; Alavie, T.; Measures, R.M.; Tadros, G.; Rizkalla, S.H.; Guha-Thakurta, A. Fiber-Optic Bragg Grating Sensors for Bridge Monitoring. Cem. Concr. Compos. 1997, 19, 21–33. [Google Scholar] [CrossRef]
- Siwowski, T.; Rajchel, M.; Howiacki, T.; Sieńko, R.; Bednarski, Ł. Distributed Fibre Optic Sensors in FRP Composite Bridge Monitoring: Validation through Proof Load Tests. Eng. Struct. 2021, 246, 113057. [Google Scholar] [CrossRef]
- Kishida, K.; Aung, T.L.; Lin, R. Monitoring a Railway Bridge with Distributed Fiber Optic Sensing Using Specially Installed Fibers. Sensors 2025, 25, 98. [Google Scholar] [CrossRef]
- Yue, L.; Wang, Q.; Liu, F.; Nan, Q.; He, G.; Li, S. Research on Distributed Strain Monitoring of a Bridge Based on a Strained Optical Cable with Weak Fiber Bragg Grating Array. Opt. Express OE 2024, 32, 11693–11714. [Google Scholar] [CrossRef]
- Tennyson, R.C.; Mufti, A.A.; Rizkalla, S.; Tadros, G.; Benmokrane, B. Structural Health Monitoring of Innovative Bridges in Canada with Fiber Optic Sensors. Smart Mater. Struct. 2001, 10, 560. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, H.; Jiang, X.; Broere, W. Distributed Fiber Optic Sensors for Tunnel Monitoring: A State-of-the-Art Review. J. Rock. Mech. Geotech. Eng. 2024, 16, 3841–3863. [Google Scholar] [CrossRef]
- Monsberger, C.M.; Bauer, P.; Buchmayer, F.; Lienhart, W. Large-Scale Distributed Fiber Optic Sensing Network for Short and Long-Term Integrity Monitoring of Tunnel Linings. J. Civ. Struct. Health Monit. 2022, 12, 1317–1327. [Google Scholar] [CrossRef]
- Monsberger, C.M.; Lienhart, W. Distributed Fiber Optic Shape Sensing along Shotcrete Tunnel Linings: Methodology, Field Applications, and Monitoring Results. J. Civ. Struct. Health Monit. 2021, 11, 337–350. [Google Scholar] [CrossRef]
- Buchmayer, F.; Monsberger, C.M.; Lienhart, W. Advantages of Tunnel Monitoring Using Distributed Fibre Optic Sensing. J. Appl. Geod. 2021, 15, 1–12. [Google Scholar] [CrossRef]
- He, T.; Wang, W.; He, B.-G.; Chen, J. Review on Optical Fiber Sensors for Hazardous-Gas Monitoring in Mines and Tunnels. IEEE Trans. Instrum. Meas. 2023, 72, 7003722. [Google Scholar] [CrossRef]
- Kishida, K.; Imai, M.; Kawabata, J.; Guzik, A. Distributed Optical Fiber Sensors for Monitoring of Civil Engineering Structures. Sensors 2022, 22, 4368. [Google Scholar] [CrossRef]
- Piccolo, A.; Lecieux, Y.; Delepine-Lesoille, S.; Leduc, D. Non-Invasive Tunnel Convergence Measurement Based on Distributed Optical Fiber Strain Sensing. Smart Mater. Struct. 2019, 28, 045008. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, H.-H.; Jiang, X.; Broere, W.; Long, L. Designing a Distributed Sensing Network for Structural Health Monitoring of Concrete Tunnels: A Case Study. Struct. Control Health Monit. 2024, 2024, 6087901. [Google Scholar] [CrossRef]
- Minardo, A.; Catalano, E.; Coscetta, A.; Zeni, G.; Zhang, L.; Di Maio, C.; Vassallo, R.; Coviello, R.; Macchia, G.; Picarelli, L.; et al. Distributed Fiber Optic Sensors for the Monitoring of a Tunnel Crossing a Landslide. Remote Sens. 2018, 10, 1291. [Google Scholar] [CrossRef]
- Xiao, Z.; Di Murro, V.; Osborne, J.A.; Zhu, H.; Li, Z. Distributed Fibre Optic Sensing and Novel Data Processing Method for Tunnel Circumferential Deformation—A Case Study of an Ageing Tunnel at CERN. Tunn. Undergr. Space Technol. 2024, 153, 106014. [Google Scholar] [CrossRef]
- Chen, B.; Zhu, Z.; Su, Z.; Yao, W.; Zheng, S.; Wang, P. Optical Fiber Sensors in Infrastructure Monitoring: A Comprehensive Review. Intell. Transp. Infrastruct. 2023, 2, liad018. [Google Scholar] [CrossRef]
- Huang, L.; Li, Y.; Chen, S.; Zhang, Q.; Song, Y.; Zhang, J.; Wang, M. Building Safety Monitoring Based on Extreme Gradient Boosting in Distributed Optical Fiber Sensing. Opt. Fiber Technol. 2020, 55, 102149. [Google Scholar] [CrossRef]
- Chao, C.-R.; Liang, W.-L.; Liang, T.-C. Design and Testing of a 2D Optical Fiber Sensor for Building Tilt Monitoring Based on Fiber Bragg Gratings. Appl. Syst. Innov. 2018, 1, 2. [Google Scholar] [CrossRef]
- Moser, D.; Martin-Candilejo, A.; Cueto-Felgueroso, L.; Santillán, D. Use of Fiber-Optic Sensors to Monitor Concrete Dams: Recent Breakthroughs and New Opportunities. Structures 2024, 67, 106968. [Google Scholar] [CrossRef]
- Inaudi, D. Optical Fiber Sensors for Dam and Levee Monitoring and Damage Detection. In Levees and Dams: Advances in Geophysical Monitoring and Characterization; Lorenzo, J., Doll, W., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 91–120. ISBN 9783030273675. [Google Scholar]
- Hussels, M.-T.; Chruscicki, S.; Habib, A.; Krebber, K. Distributed Acoustic Fibre Optic Sensors for Condition Monitoring of Pipelines. In Proceedings of the Sixth European Workshop on Optical Fibre Sensors, Limerick, Ireland, 30 May 2016; Volume 9916, pp. 419–422. [Google Scholar]
- Zhu, H.-H.; Liu, W.; Wang, T.; Su, J.-W.; Shi, B. Distributed Acoustic Sensing for Monitoring Linear Infrastructures: Current Status and Trends. Sensors 2022, 22, 7550. [Google Scholar] [CrossRef] [PubMed]
- Ghazali, M.F.; Mohamad, H.; Nasir, M.Y.M.; Hamzh, A.; Abdullah, M.A.; Aziz, N.F.A.; Thansirichaisree, P.; Zan, M.S.D. State-of-The-Art Application and Challenges of Optical Fibre Distributed Acoustic Sensing in Civil Engineering. Opt. Fiber Technol. 2024, 87, 103911. [Google Scholar] [CrossRef]
- Bertulessi, M.; Bignami, D.F.; Boschini, I.; Longoni, M.; Menduni, G.; Morosi, J. Experimental Investigations of Distributed Fiber Optic Sensors for Water Pipeline Monitoring. Sensors 2023, 23, 6205. [Google Scholar] [CrossRef]
- Ribeiro, L.A.; Rosolem, J.B.; Dini, D.C.; Floridia, C.; Hortencio, C.A.; da Costa, E.F.; Bezerra, E.W.; de Oliveira, R.B.; Loichate, M.D.; Durelli, A.S. Fiber Optic Bending Loss Sensor for Application on Monitoring of Embankment Dams. In Proceedings of the 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011), Natal, Brazil, 29 October–1 November 2011; pp. 637–641. [Google Scholar]
- Bednarz, B.; Popielski, P.; Sieńko, R.; Howiacki, T.; Bednarski, Ł. Distributed Fibre Optic Sensing (DFOS) for Deformation Assessment of Composite Collectors and Pipelines. Sensors 2021, 21, 5904. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Zhang, C.; Li, M.; Li, N.; Wu, H.; Liu, Y.; Peng, W.; Song, Y. Marine Structural Health Monitoring with Optical Fiber Sensors: A Review. Sensors 2023, 23, 1877. [Google Scholar] [CrossRef] [PubMed]
- Grangeat, R.; Girard, M.; Lupi, C.; Leduc, D.; Jacquemin, F. Plastic Optical Fiber Sensors for Mooring Lines Monitoring in Floating Wind Turbines: A Reliability Study of OTDR Measurement. Appl. Ocean. Res. 2025, 158, 104541. [Google Scholar] [CrossRef]
- Tam, H.Y. The Applications of Fibre-Optic Sensor Technology in Railway Systems and Wind Turbines. In OSA Technical Digest, Proceedings of the Renewable Energy and the Environment Optics and Photonics Congress (2012), Eindhoven, Netherlands, 11–14 November 2012; Optica Publishing Group: Washington, DC, USA, 2012; p. EM2D.5. [Google Scholar]
- Xu, J.T.; Luo, L.; Saw, J.; Wang, C.-C.; Sinha, S.K.; Wolfe, R.; Soga, K.; Wu, Y.; DeJong, M. Structural Health Monitoring of Offshore Wind Turbines Using Distributed Acoustic Sensing (DAS). J. Civ. Struct. Health Monit. 2025, 15, 445–463. [Google Scholar] [CrossRef]
- Glavind, L.; Olesen, I.S.; Skipper, B.F.; Kristensen, M.V. Fiber-Optical Grating Sensors for Wind Turbine Blades: A Review. OE 2013, 52, 030901. [Google Scholar] [CrossRef]
- Zhu, P.; Feng, X.; Liu, Z.; Huang, M.; Xie, H.; Soto, M.A. Reliable Packaging of Optical Fiber Bragg Grating Sensors for Carbon Fiber Composite Wind Turbine Blades. Compos. Sci. Technol. 2021, 213, 108933. [Google Scholar] [CrossRef]
- Ali, O. Revolutionizing Infrastructure: The Future of Fiber Optic Sensing in Structural Health Monitoring. Available online: https://www.azooptics.com/Article.aspx?ArticleID=2572 (accessed on 23 April 2025).
- Lesnikova, Y.I.; Trufanov, A.N.; Kamenskikh, A.A. Analysis of the Polymer Two-Layer Protective Coating Impact on Panda-Type Optical Fiber under Bending. Polymers 2022, 14, 3840. [Google Scholar] [CrossRef]
- Capellari, G.; Chatzi, E.; Mariani, S. Cost–Benefit Optimization of Structural Health Monitoring Sensor Networks. Sensors 2018, 18, 2174. [Google Scholar] [CrossRef]
- Elsherif, M.; Salih, A.E.; Muñoz, M.G.; Alam, F.; AlQattan, B.; Antonysamy, D.S.; Zaki, M.F.; Yetisen, A.K.; Park, S.; Wilkinson, T.D.; et al. Optical Fiber Sensors: Working Principle, Applications, and Limitations. Adv. Photonics Res. 2022, 3, 2100371. [Google Scholar] [CrossRef]
- Weisbrich, M.; Messerer, D.; Holschemacher, K. The Challenges and Advantages of Distributed Fiber Optic Strain Monitoring in and on the Cementitious Matrix of Concrete Beams. Sensors 2023, 23, 9477. [Google Scholar] [CrossRef] [PubMed]
- An, P.; Wei, C.; Tang, H.; Deng, Q.; Yu, B.; Fang, K. An Improved Calibration Method to Determine the Strain Coefficient for Optical Fibre Sensing Cables. Photonics 2021, 8, 429. [Google Scholar] [CrossRef]
- Zou, W.; Long, X.; Chen, J.; Zou, W.; Long, X.; Chen, J. Brillouin Scattering in Optical Fibers and Its Application to Distributed Sensors. In Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications; IntechOpen: London, UK, 2015; ISBN 978-953-51-1742-1. [Google Scholar]
- Ghafoori, Y.; Vidmar, A.; Kryžanowski, A. A Dynamic Calibration of Optical Fiber DTS Measurements Using PEST and Reference Thermometers. Sensors 2022, 22, 3890. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Yu, Q.; Ren, L.; Liu, Q.; Zhao, Y. Application of Machine Learning in Optical Fiber Sensors. Measurement 2024, 228, 114391. [Google Scholar] [CrossRef]
- Altabey, W.A.; Noori, M. Artificial-Intelligence-Based Methods for Structural Health Monitoring. Appl. Sci. 2022, 12, 12726. [Google Scholar] [CrossRef]
- Azimi, M.; Eslamlou, A.D.; Pekcan, G. Data-Driven Structural Health Monitoring and Damage Detection through Deep Learning: State-of-the-Art Review. Sensors 2020, 20, 2778. [Google Scholar] [CrossRef] [PubMed]
- Zinno, R.; Haghshenas, S.S.; Guido, G.; VItale, A. Artificial Intelligence and Structural Health Monitoring of Bridges: A Review of the State-of-the-Art. IEEE Access 2022, 10, 88058–88078. [Google Scholar] [CrossRef]
- Zhang, G.-Q.; Wang, B.; Li, J.; Xu, Y.-L. The Application of Deep Learning in Bridge Health Monitoring: A Literature Review. Adv. Bridge Eng. 2022, 3, 22. [Google Scholar] [CrossRef]
- Di Mucci, V.M.; Cardellicchio, A.; Ruggieri, S.; Nettis, A.; Renò, V.; Uva, G. Artificial Intelligence in Structural Health Management of Existing Bridges. Autom. Constr. 2024, 167, 105719. [Google Scholar] [CrossRef]
- Yan, K.; Lin, X.; Ma, W.; Zhang, Y. AI-Based Self-Learning System in Distributed Structural Health Monitoring and Control. Neural Process Lett. 2023, 55, 229–245. [Google Scholar] [CrossRef]
- Saha, S.; Hadigheh, S.A.; Rukhlenko, I.; Valix, M.; Uy, B.; Fleming, S. Machine Learning-Augmented Multi-Arrayed Fiber Bragg Grating Sensors for Enhanced Structural Health Monitoring by Discriminating Strain and Temperature Variations. J. Civ. Struct. Health Monit. 2025, 15, 597–618. [Google Scholar] [CrossRef]
- Morshed, A.H.E.; Atta, R.M. Multimode Optical Fiber Strain Monitoring for Smart Infrastructures. Ain Shams Eng. J. 2023, 14, 102181. [Google Scholar] [CrossRef]
- Cai, X.; Chang, W.; Gao, L.; Zhou, C. Design and Application of Real-Time Monitoring System for Service Status of Continuously Welded Turnout on the High-Speed Railway Bridge. J. Transp. Saf. Secur. 2021, 13, 735–758. [Google Scholar] [CrossRef]
- Robles Urquijo, I.; Quintela Incera, A.; Van Vaerenbergh, S.; Inaud, D.; Lopez Higuera, J.M. Risks and Opportunities of Using Fibre Optic Sensors for Long Term Infrastructure Health Monitoring Systems in an 18 Year Old Installation. In International Conference on Smart Infrastructure and Construction 2019 (ICSIC); Cambridge Centre for Smart Infrastructure & Construction; ICE Publishing: London, UK, 2019; pp. 623–630. ISBN 9780727764669. [Google Scholar]
- Khandel, O.; Soliman, M.; Floyd, R.W.; Murray, C.D. Performance Assessment of Prestressed Concrete Bridge Girders Using Fiber Optic Sensors and Artificial Neural Networks. Struct. Infrastruct. Eng. 2021, 17, 605–619. [Google Scholar] [CrossRef]
- Mustapha, S.; Kassir, A.; Hassoun, K.; Dawy, Z.; Abi-Rached, H. Estimation of Crowd Flow and Load on Pedestrian Bridges Using Machine Learning with Sensor Fusion. Autom. Constr. 2020, 112, 103092. [Google Scholar] [CrossRef]
- Wu, H.; Qian, Y.; Zhang, W.; Tang, C. Feature Extraction and Identification in Distributed Optical-Fiber Vibration Sensing System for Oil Pipeline Safety Monitoring. Photonic Sens. 2017, 7, 305–310. [Google Scholar] [CrossRef]
- Bai, Y.; Xing, J.; Xie, F.; Liu, S.; Li, J. Detection and Identification of External Intrusion Signals from 33 km Optical Fiber Sensing System Based on Deep Learning. Opt. Fiber Technol. 2019, 53, 102060. [Google Scholar] [CrossRef]
- Chen, J.; Wu, H.; Liu, X.; Xiao, Y.; Wang, M.; Yang, M.; Rao, Y. A Real-Time Distributed Deep Learning Approach for Intelligent Event Recognition in Long Distance Pipeline Monitoring with DOFS. In Proceedings of the 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Zhengzhou, China, 18–20 October 2018; pp. 290–2906. [Google Scholar]
- Oh, B.K.; Kim, K.J.; Kim, Y.; Park, H.S.; Adeli, H. Evolutionary Learning Based Sustainable Strain Sensing Model for Structural Health Monitoring of High-Rise Buildings. Appl. Soft Comput. 2017, 58, 576–585. [Google Scholar] [CrossRef]
- Tam, H.; Lee, K.; Liu, S.; Cho, L.; Cheng, K. Intelligent Optical Fibre Sensing Networks Facilitate Shift to Predictive Maintenance in Railway Systems. In Proceedings of the 2018 International Conference on Intelligent Rail Transportation (ICIRT), Singapore, 12–14 December 2018; pp. 1–4. [Google Scholar]
- Frniak, M.; Markovic, M.; Kamencay, P.; Dubovan, J.; Benco, M.; Dado, M. Vehicle Classification Based on FBG Sensor Arrays Using Neural Networks. Sensors 2020, 20, 4472. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, H.; Wang, J.; Xin, X. Distributed Optical Fiber Sensing System for Large Infrastructure Temperature Monitoring. IEEE Internet Things J. 2022, 9, 3333–3345. [Google Scholar] [CrossRef]
- Bartnik, K.; Koba, M.; Śmietana, M. Advancements in Optical Fiber Sensors for in Vivo Applications—A Review of Sensors Tested on Living Organisms. Measurement 2024, 224, 113818. [Google Scholar] [CrossRef]
- Zhu, C.; Huang, J. Machine Learning Boosts Performance of Optical Fiber Sensors: A Case Study for Vector Bending Sensing. Opt. Express OE 2022, 30, 24553–24564. [Google Scholar] [CrossRef]
- Zhan, Y.; Li, K.; Liu, L.; Yu, D. Performance Improvement of Optical Fiber Sensor Based on Phase Sensitive Optical Time Domain Reflectometry. J. Opt. 2024, 53, 4000–4012. [Google Scholar] [CrossRef]
- Li, C.; Yang, W.; Wang, M.; Yu, X.; Fan, J.; Xiong, Y.; Yang, Y.; Li, L. A Review of Coating Materials Used to Improve the Performance of Optical Fiber Sensors. Sensors 2020, 20, 4215. [Google Scholar] [CrossRef]
- Pelaez Quiñones, J.D.; Sladen, A.; Ponte, A.; Lior, I.; Ampuero, J.-P.; Rivet, D.; Meulé, S.; Bouchette, F.; Pairaud, I.; Coyle, P. High Resolution Seafloor Thermometry for Internal Wave and Upwelling Monitoring Using Distributed Acoustic Sensing. Sci. Rep. 2023, 13, 17459. [Google Scholar] [CrossRef]
- Gurevich, B.; Isaenkov, R.; Erbe, C.; Gavrilov, A.N.; Sidenko, E.; Tertyshnikov, K.; Vorobev, M.; Pevzner, R. Detection of Aircraft Noise Using Distributed Acoustic Sensing with a Buried Telecommunication Cable. Npj Acoust. 2025, 1, 2. [Google Scholar] [CrossRef]
- Shang, Y.; Sun, M.; Wang, C.; Yang, J.; Du, Y.; Yi, J.; Zhao, W.; Wang, Y.; Zhao, Y.; Ni, J. Research Progress in Distributed Acoustic Sensing Techniques. Sensors 2022, 22, 6060. [Google Scholar] [CrossRef]
- Marin, J.M.; Briantcev, D.; Kang, C.H.; Alkhazragi, O.; Ng, T.K.; Ashry, I.; Trichili, A.; Ooi, B.S. Hybrid Distributed Acoustic Sensing and Kramers–Kronig Communication System over a Two-Mode Fiber. In Proceedings of the 2023 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 5–9 March 2023; pp. 1–3. [Google Scholar]
- Muanenda, Y.; Oton, C.J.; Faralli, S.; Nannipieri, T.; Signorini, A.; Pasquale, F.D. Hybrid Distributed Acoustic and Temperature Sensor Using a Commercial Off-the-Shelf DFB Laser and Direct Detection. Opt. Lett. OL 2016, 41, 587–590. [Google Scholar] [CrossRef]
- Pendão, C.; Silva, I. Optical Fiber Sensors and Sensing Networks: Overview of the Main Principles and Applications. Sensors 2022, 22, 7554. [Google Scholar] [CrossRef] [PubMed]
- Mrabet, M.; Sliti, M. Climate Change Mitigation and Adaptation through Optical-Wireless Communication Networks: Applications, Challenges, and Opportunities. Front. Clim. 2024, 6, 1480190. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, S.; Sun, T.; Grattan, K.T.V. A Novel Wireless Mobile Platform Integrated with Optical Fibre Sensors. In Proceedings of the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2 June 2014; Volume 9157, pp. 1317–1321. [Google Scholar]
- Marin, J.M.; Ashry, I.; Trichili, A.; Alkhazragi, O.; Kang, C.H.; Ng, T.K.; Ooi, B.S. Energy Recycling from Distributed Fiber-Optic Sensors. IEEE Photonics Technol. Lett. 2023, 35, 994–997. [Google Scholar] [CrossRef]
- Marin, J.M.; Rjeb, A.; Ashry, I.; Ng, T.K.; Ooi, B.S. Energy Harvesting from Fiber Bragg Grating-Based Sensors. In Technical Digest Series, Proceedings of the 28th International Conference on Optical Fiber Sensors (2023), Naka-ku, Japan, 20–24 November 2023; Optica Publishing Group: Washington, DC, USA, 2023; p. W4.87. [Google Scholar]
- Gunawan, W.H.; Marin, J.M.; Rjeb, A.; Kang, C.H.; Ashry, I.; Ng, T.K.; Ooi, B.S. Energy Harvesting Over Fiber from Amplified Spontaneous Emission in Optical Sensing and Communication Systems. J. Light. Technol. 2024, 42, 6511–6521. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Jiao, X.; Li, X.; Wu, H.; Zhou, J.; Xu, Z.; Yu, X. Rapid Edge-Computing for Intelligent Fiber-Optic DAS. IEEE Sens. J. 2025, 25, 17062–17071. [Google Scholar] [CrossRef]
- Su, Y.-D.; Ohodnicki, P.R.; Wuenschell, J.K.; Lalam, N.; Sarcinelli, E.; Buric, M.P.; Wright, R. Multiparameter Optical Fiber Sensing for Energy Infrastructure through Nanoscale Light–Matter Interactions: From Hardware to Software, Science to Commercial Opportunities. APL Photonics 2024, 9, 120902. [Google Scholar] [CrossRef]
- Venketeswaran, A.; Lalam, N.; Wuenschell, J.; Ohodnicki, P.R., Jr.; Badar, M.; Chen, K.P.; Lu, P.; Duan, Y.; Chorpening, B.; Buric, M. Recent Advances in Machine Learning for Fiber Optic Sensor Applications. Adv. Intell. Syst. 2022, 4, 2100067. [Google Scholar] [CrossRef]
- Zhu, K.; Zhou, B.; Wu, H.; Shang, C.; Lu, L.; Adeel, M.; Yan, Y.; Zhao, Z.; Tam, H.-Y.; Lu, C. Multipath Distributed Acoustic Sensing System Based on Phase-Sensitive Optical Time-Domain Reflectometry with Frequency Division Multiplexing Technique. Opt. Lasers Eng. 2021, 142, 106593. [Google Scholar] [CrossRef]
- Liu, C.; Qiu, S.; Wang, G.; Cheng, C.; Tang, J.; Yang, M. Simultaneous Distributed Acoustic and Temperature Sensing System Based on Ultra-Weak Chirped Fiber Bragg Grating Array. Opt. Express OE 2023, 31, 18516–18524. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Milione, G.; Stone, J.; Peng, G.; Li, M.-J.; Ip, E.; Li, Y.; Ji, P.N.; Huang, Y.-K.; Huang, M.-F.; et al. Multi-Parameter Distributed Fiber Sensing with Higher-Order Optical and Acoustic Modes. Opt. Lett. OL 2019, 44, 1096–1099. [Google Scholar] [CrossRef] [PubMed]
- Lalam, N.; Bukka, S.; Bhatta, H.; Buric, M.; Ohodnicki, P.; Wright, R. Achieving Precise Multiparameter Measurements with Distributed Optical Fiber Sensor Using Wavelength Diversity and Deep Neural Networks. Commun. Eng. 2024, 3, 121. [Google Scholar] [CrossRef]
- OPTICS11. Developing New Standards in Fiber Optic Sensing Industry. Available online: https://optics11.com/blog/developing-new-standards-in-fiber-optic-sensing-industry/ (accessed on 24 April 2025).
- Anjana, R.W.K.; Herath, H.M.C.M.; Jayawickrema, U.M.N.; Epaarachchi, J.A. Optical Fibre Sensing and Deep Learning-Based Disaster and Climate Change Risk Assessments of Civil Infrastructure: Current Status and Future Perspective. In ICSBE 2022; Dissanayake, R., Mendis, P., Weerasekera, K., De Silva, S., Fernando, S., Konthesingha, C., Gajanayake, P., Eds.; Springer Nature: Singapore, 2023; pp. 463–476. [Google Scholar]
- Toney, J.E.; Mazurowski, J. Environmental Stress Effects on Fiber Optic Cable End Faces. In Proceedings of the 2009 IEEE Avionics, Fiber-Optics and Phototonics Technology Conference, San Antonio, TX, USA, 22–24 September 2009; pp. 52–53. [Google Scholar]
- Rovera, A.; Tancau, A.; Boetti, N.; Dalla Vedova, M.D.L.; Maggiore, P.; Janner, D. Fiber Optic Sensors for Harsh and High Radiation Environments in Aerospace Applications. Sensors 2023, 23, 2512. [Google Scholar] [CrossRef]
Sensor Type | Sensing Principle | Measured Parameters | Key Features | Applications |
---|---|---|---|---|
Fiber Bragg Grating (FBG) [33,48,49] | Bragg reflection from periodic refractive index changes | Strain, temperature, and pressure | High sensitivity; multiplexing capability; localized measurement; and EMI immunity | Structural health monitoring; aerospace; and civil engineering |
Distributed Temperature Sensing (DTS) [16,37] | Raman scattering | Temperature | Continuous sensing along fiber; long range (up to 30+ km); and durable and reliable | Pipeline and tunnel monitoring; and fire detection |
Distributed Acoustic Sensing (DAS) [39,40] | Rayleigh scattering | Acoustic signals and vibration | Real-time vibration/acoustic monitoring; intrusion detection; and long range | Perimeter security and seismic activity monitoring |
Brillouin Optical Time-Domain Analysis (BOTDA) [17,41] | Brillouin scattering | Strain and temperature | High spatial resolution; distributed sensing over long distances; and dual-parameter monitoring | Bridges, dams, and tunnels |
Fabry–Perot Interferometer [44,46] | Interference between reflections in microcavity | Strain, pressure, and temperature | High resolution; compact; and intrinsic or extrinsic configurations | Pressure sensors and biomedical sensing |
Mach–Zehnder Interferometer [50,51] | Optical path difference between two light paths | Displacement, vibration, and refractive index | Extremely sensitive; requires stable setup; and can be complex to fabricate | Precision sensing and vibration analysis |
Characteristic | OFSs | Traditional Electrical Sensors |
---|---|---|
Sensitivity [66] | High sensitivity to strain, temperature, vibration, and pressure. | Also capable of high sensitivity, especially with MEMS and advanced piezoelectric or capacitive elements. |
Multiplexing Capability [30] | Capable of multiplexing many sensors along a single fiber using WDM or TDM. | Digital sensors increasingly support bus-based multiplexing (e.g., RS-485, CAN, I2C), though with practical limits. |
Size and Weight [67] | Very lightweight and compact and suitable for embedding. | MEMS sensors are highly miniaturized and comparable in size: some are even smaller than OFSs. |
EMI Immunity [68] | Immune to electromagnetic interference (ideal for high-voltage or noisy environments). | Shielding and filtering reduce EMI effects in many applications but they may still require additional protection in some cases. |
Installation Complexity [30,69] | Requires precise handling and protection, especially in retrofits. | Typically, easier to install; robust cabling; and higher installation survival rate in some field environments. |
Durability [70] | Resistant to corrosion and harsh environments when properly packaged. | Ruggedized versions available which have high durability in various environments, especially when hardened. |
Real-Time Monitoring [67] | Enables continuous, distributed monitoring along long distances. | Many systems support real-time monitoring, typically at discrete points unless networked. |
Cost [71] | Higher initial system cost (sensors + interrogators) but cost-effective at large scale. | Generally lower per-sensor cost as the system cost scales linearly with the number of channels. |
Technological Maturity [72] | Proven in high-end applications and standards still evolving for widespread deployment. | Widely used and standardized with a long history of deployment in SHM and industrial monitoring [73]. |
Power Requirements [74] | Passive sensing (no power at sensor) which requires an optical interrogator. | Requires electrical power at the sensor or via the cable but low-power designs are increasingly common. |
Sensor Type | Measurement | DL Training Type | DL Framework | Reference |
---|---|---|---|---|
FBG | Temperature, stress, and displacement data | Supervised | - | [124] |
FBG | Strain and temperature | Supervised | TensorFlow | [125] |
FBG | Temperature, deflection, and strain | Supervised | - | [126] |
FBG | Dynamic strain | Supervised | - | [127] |
DOFS | Vibration | Supervised | - | [128] |
DOFS | Vibration | Supervised | - | [129] |
DOFS | Vibration | Supervised | TensorFlow | [130] |
FBG | Strain | Supervised | - | [131] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golovastikov, N.V.; Kazanskiy, N.L.; Khonina, S.N. Optical Fiber-Based Structural Health Monitoring: Advancements, Applications, and Integration with Artificial Intelligence for Civil and Urban Infrastructure. Photonics 2025, 12, 615. https://doi.org/10.3390/photonics12060615
Golovastikov NV, Kazanskiy NL, Khonina SN. Optical Fiber-Based Structural Health Monitoring: Advancements, Applications, and Integration with Artificial Intelligence for Civil and Urban Infrastructure. Photonics. 2025; 12(6):615. https://doi.org/10.3390/photonics12060615
Chicago/Turabian StyleGolovastikov, Nikita V., Nikolay L. Kazanskiy, and Svetlana N. Khonina. 2025. "Optical Fiber-Based Structural Health Monitoring: Advancements, Applications, and Integration with Artificial Intelligence for Civil and Urban Infrastructure" Photonics 12, no. 6: 615. https://doi.org/10.3390/photonics12060615
APA StyleGolovastikov, N. V., Kazanskiy, N. L., & Khonina, S. N. (2025). Optical Fiber-Based Structural Health Monitoring: Advancements, Applications, and Integration with Artificial Intelligence for Civil and Urban Infrastructure. Photonics, 12(6), 615. https://doi.org/10.3390/photonics12060615