Self-Assembly of Zinc Oxide Photonic Crystals in Viscous Liquids: Synthesis, Characterization, and Application to Colored Contact Lenses
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of ZnO Nanoparticles
2.3. Preparation of ZnO Nanoparticle Paint
2.4. Preparation of Structural Color Contact Lenses
2.5. Performance Testing of Structural Color Contact Lenses
2.6. Characterization
3. Results and Discussion
3.1. Microstructure of ZnO Nanoparticles
3.2. Preparation of Photonic Crystal Contact Lenses
3.3. Photonic Crystal Contact Lens Performance
3.3.1. Light Transmittance Test
3.3.2. Cytotoxicity Test
3.3.3. Protein Adsorption Test
3.3.4. Oxygen Permeability Test
3.3.5. Contact Angle Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kinoshita, S.; Yoshioka, S. Structural Colors in Nature: The Role of Regularity and Irregularity in the Structure. ChemPhysChem 2005, 6, 1442–1459. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Fang, Y. Structural colored fabric with superhydrophobicity by assembly SiO2@PPy composite microspheres and spraying PDMS on white fabric. Opt. Mater. 2025, 161, 116826. [Google Scholar] [CrossRef]
- Vigneron, J.P.; Simonis, P. Natural photonic crystals. Phys. B Condens. Matter 2012, 407, 4032–4036. [Google Scholar] [CrossRef]
- Han, P.; Li, Y.; Zhao, B.; Li, H.; Wang, Z.; Liu, X.; Meng, W. Visual and label-free detection of urea based on amorphous photonic films with non-iridescent structural colors. Anal. Chim. Acta 2025, 1345, 343731. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Zhu, L.; Wu, Y.; Si, P.; Zhang, D. Harmless photonic crystal tattoo with angle-independent structural color based on SiO nanoparticles and silk fibroin. J. Appl. Polym. Sci. 2024, 141, e55482. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Lee, K.M.; White, T.J.; Jeong, K.-U. Cholesteric liquid crystal paints: In situ photopolymerization of helicoidally stacked multilayer nanostructures for flexible broadband mirrors. NPG Asia Mater. 2018, 10, 1061–1068. [Google Scholar] [CrossRef]
- Bai, L.; Xie, Z.; Wang, W.; Yuan, C.; Zhao, Y.; Mu, Z.; Zhong, Q.; Gu, Z. Bio-Inspired Vapor-Responsive Colloidal Photonic Crystal Patterns by Inkjet Printing. ACS Nano 2014, 8, 11094–11100. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Q.; Wang, X.; Liu, G.; Chai, L.; Zhou, L.; Shao, J.; Yin, Y. Shear-Induced Assembly of Liquid Colloidal Crystals for Large-Scale Structural Coloration of Textiles. Adv. Funct. Mater. 2021, 31, 2010746. [Google Scholar] [CrossRef]
- He, Y.; Liu, L.; Fu, Q.; Ge, J. Precise Assembly of Highly Crystalline Colloidal Photonic Crystals inside the Polyester Yarns: A Spray Coating Synthesis for Breathable and Durable Fabrics with Saturated Structural Colors. Adv. Funct. Mater. 2022, 32, 2200330. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Hu, M.; Zhou, L.; Chai, L.; Fan, Q.; Shao, J. Patterned SiO2/Polyurethane Acrylate Inverse Opal Photonic Crystals with High Color Saturation and Tough Mechanical Strength. Langmuir 2019, 35, 14282–14290. [Google Scholar] [CrossRef]
- Han, Y.; Meng, Z.; Wu, Y.; Zhang, S.; Wu, S. Structural Colored Fabrics with Brilliant Colors, Low Angle Dependence, and High Color Fastness Based on the Mie Scattering of Cu2O Spheres. ACS Appl. Mater. Interfaces 2021, 13, 57796–57802. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Gao, H.; Wang, Y.; Chen, T. Creation of polystyrene nanoparticle patterns for structural color application. Colloids Surf. A Physicochem. Eng. Asp. 2024, 686, 133318. [Google Scholar] [CrossRef]
- Yang, X.; Ge, D.; Wu, G.; Liao, Z.; Yang, S. Production of Structural Colors with High Contrast and Wide Viewing Angles from Assemblies of Polypyrrole Black Coated Polystyrene Nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 16289–16295. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Zhang, Y.; Fu, G.; Zhou, L.; Fan, Q. Preparation of monodispersed polystyrene microspheres and self-assembly of photonic crystals for structural colors on polyester fabrics. J. Text. Inst. 2014, 105, 938–943. [Google Scholar] [CrossRef]
- Sun, H.; Cui, J.; Wei, L.; Zhang, W.; Jiang, S.; Zhou, H.; Xie, Z. Preparation of structural colors assembled by SiO2@PDA microspheres to achieve inhibition of coffee-ring effect by multilayer coating on paper substrate. Dyes Pigments 2025, 238, 112716. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Yu, W.; Jia, P.; Zhang, X.; Wu, N.; Yu, H.; Song, Y.; Zhou, J. Bio-inspired stretchable and self-healable nanocomposite gelatin hydrogel with low silica nanoparticle content and brilliant angle/strain-independent structural colors. Chem. Eng. J. 2024, 496, 154190. [Google Scholar] [CrossRef]
- Raghuwanshi, V.S.; Vir, A.B.; Lin, M.; Garnier, G. From transparent to structural white: Modulating nanoscale self-assembly in silica and nanocellulose composites. Colloids Surf. A Physicochem. Eng. Asp. 2023, 675, 131999. [Google Scholar] [CrossRef]
- Okawa, M.; Ikami, T.; Yamagishi, Y.; Watanabe, K.; Nagai, H. High-luminescence polymer/ceramic pressure-sensitive paint employing low-refractive-index silica nanoparticles. Meas. Sci. Technol. 2025, 36, 035104. [Google Scholar] [CrossRef]
- Chen, W.; Jin, W.; Yang, Q.; Liu, S.; Xiao, T.; Jiang, L.; Tan, X.; Lei, Y. Synthesis of hydrophobic silica without traditional aging process to construct the anti-reflective film with ultralow refractive index for improving power conversion efficiency. Colloids Surf. A Physicochem. Eng. Asp. 2024, 703, 135218. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Zhang, H.; Shao, Y.; Zhu, J. Mussel-inspired antimicrobial and antireflective Ag-NPs/PDA/SiO2 coatings via interfacial functionalization. Chem. Eng. J. 2024, 490, 151434. [Google Scholar] [CrossRef]
- Liu, X.; Hu, S.; Tang, Y. Coated High-Refractive-Index Barium Titanate Glass Microspheres for Optically Trapped Microsphere Super-Resolution Microscopy: A Simulation Study. Photonics 2020, 7, 84. [Google Scholar] [CrossRef]
- Vasudevan, K.; Divyasree, M.C.; Chandrasekharan, K. Enhanced nonlinear optical properties of ZnS nanoparticles in 1D polymer photonic crystal cavity. Opt. Laser Technol. 2019, 114, 35–39. [Google Scholar] [CrossRef]
- Chacko, V.; Bansal, S.; Hafiz, A.K. Effect of dispersion on omnidirectional reflection band in zinc oxide-based one-dimensional photonic crystal heterostructures. J. Nanophotonics 2018, 12, 026012. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kim, I.-P. Quasi-bound states in the continuum with high Q-factors in metasurfaces of lower-index dielectrics supported by metallic substrates. RSC Adv. 2022, 12, 1961–1967. [Google Scholar] [CrossRef]
- Sun, X.W.; Kwok, H.S. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. J. Appl. Phys. 1999, 86, 408–411. [Google Scholar] [CrossRef]
- Kim, S.H.; Oh, G.-Y.; Kim, D.G.; Ki, H.C.; Kim, T.U.; Kim, H.J. Analysis of triangular resonator integrated with zinc oxide thin film. Opt. Quantum Electron. 2013, 45, 755–760. [Google Scholar] [CrossRef]
- Ren, Y.; Guo, Y.; Cheng, Y.; Chu, Y.; Fang, Y.; Liu, Y.; Hou, J.; Liu, Z. Towards visual color display with fast electric field response: Highly chromatic and stable colloidal photonic crystal inks. Opt. Mater. 2022, 129, 112508. [Google Scholar] [CrossRef]
- Lei, X.-Q.; Yang, F.; Han, X.-L.; Chen, P.; Ding, S.-N. Photonic crystal microspheres: Synthesis, characterization, and applications in colored contact lenses. Opt. Mater. 2024, 150, 115229. [Google Scholar] [CrossRef]
- Yang, F.; Wu, S.-T.; Lei, X.-Q.; Han, X.-L.; Chen, P.; Ding, S.-N. Novel SiO2 photonic crystal microspheres as inorganic pigments for structural color contact lenses. Opt. Mater. 2023, 138, 113705. [Google Scholar] [CrossRef]
- Huang, N.; Zhu, M.W.; Gao, L.J.; Gong, J.; Sun, C.; Jiang, X. A template-free sol–gel technique for controlled growth of ZnO nanorod arrays. Appl. Surf. Sci. 2011, 257, 6026–6033. [Google Scholar] [CrossRef]
- Huang, K.-M.; Ho, C.-L.; Chang, H.-J.; Wu, M.-C. Fabrication of inverted zinc oxide photonic crystal using sol–gel solution by spin coating method. Nanoscale Res. Lett. 2013, 8, 306. [Google Scholar] [CrossRef]
- Hammami, Z.; Selmi, A.; Maayoufi, A.E.; Altalhi, T.; Touil, S.; Mezni, A. Structural, optical, and dielectric properties of copper-doped ZnO nanorods prepared by modified sol-gel process. J. Sol-Gel Sci. Technol. 2025, 114, 669–678. [Google Scholar] [CrossRef]
- Rafee, V.; Razaghizadeh, A.; Nakhaei, R.; Hosini, R. Eco-friendly dye-sensitized solar cells: Green synthesis of ZnO nanoparticles using Sargassum algae and performance enhancement through optimized dye combinations. Mater. Sci. Eng. B 2025, 317, 118164. [Google Scholar] [CrossRef]
- Dhahri, R.; Benamara, M.; Nassar, K.I.; Elkenany, E.B.; Al-Syadi, A.M. Zinc oxide-based sensor prepared by modified sol–gel route for detection of low concentrations of ethanol, methanol, acetone, and formaldehyde. Semicond. Sci. Technol. 2024, 39, 115021. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.B.; Choi, Y.H.; Park, S.; Kim, S.-H. Photonic Microbeads Templated by Oil-in-Oil Emulsion Droplets for High Saturation of Structural Colors. Small 2022, 18, 2105225. [Google Scholar] [CrossRef]
- Han, P.; Li, Y.; Liu, J.; Meng, W.; Zhao, B. High-Performance and Broad-Viewing-Angle Structural Colored Films with Carbon Black and Carbon Quantum Dot Doping. Coatings 2024, 14, 1177. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, B.; Chen, A.; Liu, X.; Shi, L.; Zi, J. Using Cuttlefish Ink as an Additive to Produce Non-iridescent Structural Colors of High Color Visibility. Adv. Mater. 2015, 27, 4719–4724. [Google Scholar] [CrossRef]
- Shi, X.; He, J.; Xie, X.; Dou, R.; Lu, X. Photonic crystals with vivid structure color and robust mechanical strength. Dyes Pigments 2019, 165, 137–143. [Google Scholar] [CrossRef]
- Liu, B.; Fan, J.; Liu, W.; Zhang, G.; Wu, Z. Controllable in situ generated carbon black hollow silica (C@h-SiO2) photonic crystal inks with highly saturated structural colors. Dyes Pigments 2023, 208, 110810. [Google Scholar] [CrossRef]
- Stapleton, F.; Bakkar, M.; Carnt, N.; Chalmers, R.; Vijay, A.K.; Marasini, S.; Ng, A.; Tan, J.; Wagner, H.; Woods, C.; et al. CLEAR—Contact lens complications. Contact Lens Anterior Eye 2021, 44, 330–367. [Google Scholar] [CrossRef]
- Poggio, E.C.; Glynn, R.J.; Schein, O.D.; Seddon, J.M.; Shannon, M.J.; Scardino, V.A.; Kenyon, K.R. The incidence of ulcerative keratitis among users of daily-wear and extended-wear soft contact lenses. N. Engl. J. Med. 1989, 321, 779–783. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pan, M.; Yang, X.; Shang, L.; Zhao, Y. Structural Color Contact Lenses from Cholesteric Cellulose Liquid Crystals. Small Methods 2024, 9, 2401582. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Li, L.; Liu, P.; Zheng, F.; Guo, L.; Zhao, Y.; Jin, L.; Li, T.; Gu, Z. Self-Assembled Coffee-Ring Colloidal Crystals for Structurally Colored Contact Lenses. Small 2015, 11, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, M.; Prausnitz, J.M.; Radke, C.J. A single-lens polarographic measurement of oxygen permeability (Dk) for hypertransmissible soft contact lenses. Biomaterials 2007, 28, 4331–4342. [Google Scholar] [CrossRef]
- Bala, R.; Pareek, B.; Umar, A.; Arora, S.; Singh, D.; Chaudhary, A.; Alkhanjaf, A.A.M.; Almadiy, A.A.; Algadi, H.; Kumar, R.; et al. In-vitro cytotoxicity of nickel oxide nanoparticles against L-6 cell-lines: MMP, MTT and ROS studies. Environ. Res. 2022, 215, 114257. [Google Scholar] [CrossRef]
- Ye, A.; Mei, H.; Zhang, Z.; Song, F.; Jiang, L.; Huang, T.; Li, P.; Du, S.; Feng, Y.; Jiang, T.; et al. Corneal first aid lens: Collagen-based hydrogels loading aFGF as contact lens for treating corneal injuries. J. Control. Release 2025, 379, 251–265. [Google Scholar] [CrossRef]
- Han, P.; Li, X.; Zhao, B.; Li, Y.; Li, H.; Wang, Z.; Meng, W. Brilliant non-iridescent structural colors of hierarchical photonic films by hydrophobic substrates assembly design. Dyes Pigments 2023, 219, 111587. [Google Scholar] [CrossRef]
- Matsubara, K.; Watanabe, M.; Takeoka, Y. A thermally adjustable multicolor photochromic hydrogel. Angew. Chem. Int. Ed. 2007, 46, 1688–1692. [Google Scholar] [CrossRef]
- Vigneron, J.P.; Lousse, V. Variation of a photonic crystal color with the Miller indices of the exposed surface. In Proceedings of the Integrated Optoelectronic Devices 2006, San Jose, CA, USA, 1 March 2006; SPIE: Bellingham, WA, USA, 2006. [Google Scholar]
- Kunimatsu, K.; Uchida, H.; Watanabe, M. Interactions between adsorbed hydrogen and water molecules on a polycrystalline Pt electrode studied by in-situ ATR-FTIR spectroscopy. J. Electroanal. Chem. 2024, 954, 118037. [Google Scholar] [CrossRef]
- Young, M.D.; Benjamin, W.J. Calibrated oxygen permeability of 35 conventional hydrogel materials and correlation with water content. Eye Contact Lens 2003, 29, 126–133. [Google Scholar] [CrossRef]
- Menzies, K.L.; Rogers, R.; Jones, L. In vitro contact angle analysis and physical properties of blister pack solutions of daily disposable contact lenses. Eye Contact Lens 2010, 36, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Luensmann, D.; Jones, L. Protein deposition on contact lenses: The past, the present, and the future. Contact Lens Anterior Eye 2012, 35, 53–64. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, S.; Pan, Z.; Zhao, L.; Han, X.-L.; Zhang, Q.-X.; Ding, S.-N. Self-Assembly of Zinc Oxide Photonic Crystals in Viscous Liquids: Synthesis, Characterization, and Application to Colored Contact Lenses. Photonics 2025, 12, 598. https://doi.org/10.3390/photonics12060598
Hou S, Pan Z, Zhao L, Han X-L, Zhang Q-X, Ding S-N. Self-Assembly of Zinc Oxide Photonic Crystals in Viscous Liquids: Synthesis, Characterization, and Application to Colored Contact Lenses. Photonics. 2025; 12(6):598. https://doi.org/10.3390/photonics12060598
Chicago/Turabian StyleHou, Shuwen, Zichen Pan, Lin Zhao, Xue-Lian Han, Quan-Xi Zhang, and Shou-Nian Ding. 2025. "Self-Assembly of Zinc Oxide Photonic Crystals in Viscous Liquids: Synthesis, Characterization, and Application to Colored Contact Lenses" Photonics 12, no. 6: 598. https://doi.org/10.3390/photonics12060598
APA StyleHou, S., Pan, Z., Zhao, L., Han, X.-L., Zhang, Q.-X., & Ding, S.-N. (2025). Self-Assembly of Zinc Oxide Photonic Crystals in Viscous Liquids: Synthesis, Characterization, and Application to Colored Contact Lenses. Photonics, 12(6), 598. https://doi.org/10.3390/photonics12060598