Mechanism of Impurity Content in Degradation and Damage Characteristics of Calcium Fluoride Crystals by X-Ray and Deep-Ultraviolet Laser Irradiation
Abstract
:1. Introduction
2. Test Sample Preparation and Experimental Methodology
2.1. CaF2 Crystals Preparations
2.1.1. The Surface Roughness
2.1.2. Crystallinity of Crystals
2.1.3. Metal Impurity Content
2.2. X-Ray Irradiation and LIDT Test at 193 nm
3. Test Results and Discussion
3.1. Damage Characteristics of CaF2 Crystal
3.2. Characteristics and Mechanisms of Crystal Optical Property Degradation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.; Sun, H.; Ma, S.; Lu, Y.; Wu, Z.; Chen, B.; Zhang, J.; Xiao, J.; Xu, J. Investigation on the microscopic mechanism of low-energy argon ion irradiation on calcium fluoride. Appl. Surf. Sci. 2025, 684, 161860. [Google Scholar] [CrossRef]
- Exarhos, G.J.; Sakuragi, S.; Guenther, A.H.; Taguchi, Y.; Sato, H.; Kaiser, N.; Lewis, K.L.; Kasai, A.; Nanba, H.; Soileau, M.J.; et al. Evaluation of high quality CaF2 single crystals for ultra-violet laser applications. In Laser-Induced Damage in Optical Materials: 2004; SPIE: Bellingham, WA, USA, 2005; Volume 5647, pp. 314–321. [Google Scholar]
- Guesmi, M.; Thoř, T.; Procháska, F.; Hlubučková, M.; Kanclíř, V.; Taboubi, O.; Šeděnková, I.; Žídek, K. Sub-bandgap laser-induced fluorescence in the CaF2 via a linear process. J. Lumin. 2025, 278, 121023. [Google Scholar] [CrossRef]
- He, X.; Yang, L.; Zhang, K.; Li, R.; Peng, Y. Research on the shear thickening polishing CaF2 with textured hollow polishing tool. J. Manuf. Process. 2024, 119, 193–203. [Google Scholar] [CrossRef]
- Mouchovski, J.T.; Temelkov, K.A.; Vuchkov, N.K.; Sabotinov, N.V. Laser grade CaF2 with controllable properties: Growing conditions and structural imperfection. J. Phys. D Appl. Phys. 2007, 40, 7682–7686. [Google Scholar] [CrossRef]
- Chkhalo, N.I.; Durov, K.V.; Nechay, A.N.; Perekalov, A.A.; Polkovnikov, V.N.; Salashchenko, N.N. On the prospects of lithography in the region of wavelengths shorter than 13.5 nm. J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 2024, 17, S226–S232. [Google Scholar] [CrossRef]
- Chkhalo, N.I.; Salashchenko, N.N. Current state and prospects for the development of X-Ray lithography. J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 2023, 17, 307–331. [Google Scholar] [CrossRef]
- He, R.; Cheng, J.; Wang, F. Lithography Equipment. In Handbook of Integrated Circuit Industry; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1327–1359. [Google Scholar]
- Zhang, Y.; Yu, H.; Wang, L.; Wu, X.; He, J.; Huang, W.; Ouyang, C.; Chen, D.; Keshta, B.E. Advanced lithography materials: From fundamentals to applications. Adv. Colloid Interface Sci. 2024, 329, 10319. [Google Scholar] [CrossRef]
- Görlich, P.; Karras, H.; Lüdke, W.; Mothes, H.; Reimann, R. Coloration of yttrium-doped CaF2 and SrF2 crystals by X-Ray irradiation. Phys. Status Solidi (B) 2006, 3, 478–484. [Google Scholar] [CrossRef]
- Hu, H.; Zhou, J.; Ye, Y.; Li, H.; Tu, C.; Wen, H.; Ke, Y.; Sun, Y. Preparation of REE-doped CaF2 single crystals for accurate determination of REE concentrations in CaF2 crystals via UV-LA-ICP-MS. Talanta 2025, 285, 12739. [Google Scholar] [CrossRef]
- Kawaguchi, N.; Kimura, H.; Akatsuka, M.; Okada, G.; Kawano, N.; Fukuda, K.; Yanagida, T. Scintillation Characteristics of Pr:CaF2 Crystals for Charged-particle Detection. Sens. Mater. 2018, 30, 1585–1590. [Google Scholar] [CrossRef]
- Ke, Y.; Hu, H.; Zhou, J.; Li, H.; Zhang, Y.; Tu, C.; Wen, H.; Sun, Y. Study on ablation behavior and mechanism for accurate determination of rare earth elements in CaF2 crystals by UV-LA-ICP-MS. Spectrochim. Acta Part B At. Spectrosc. 2025, 224, 10709. [Google Scholar] [CrossRef]
- Kumar, R.; Joseph, D. Spectroscopic studies of Tm-doped CaF2 single-crystal. Eur. Phys. J. Plus 2024, 139, 961. [Google Scholar] [CrossRef]
- Mouhovski, J.T. Control of oxygen contamination during the growth of optical calcium fluoride and calcium strontium fluoride crystals. In Progress in Crystal Growth and Characterization of Materials; Elsevier: Amsterdam, The Netherlands, 2007; Volume 53, pp. 79–116. [Google Scholar]
- Nicoara, I.; Stef, M.; Vizman, D.; Negut, C.D. Gamma-rays induced color centers in Pb2+ doped CaF2 crystals. Radiat. Phys. Chem. 2018, 153, 70–78. [Google Scholar] [CrossRef]
- Pandurangappa, C.; Lakshminarasappa, B.N. Optical studies on lanthanum-doped calcium fluoride. J. Mater. Sci. 2011, 47, 892–897. [Google Scholar] [CrossRef]
- Sils, J.; Hausfeld, S.; Clauß, W.; Pahl, U.; Lindner, R.; Reichling, M. Impurities in synthetic fluorite for deep ultraviolet optical applications. J. Appl. Phys. 2009, 106, 063109. [Google Scholar] [CrossRef]
- Sils, J.; Radzhabov, E.; Reichling, M. Characterisation of oxygen defects in calciumdifluoride. J. Phys. Chem. Solids 2007, 68, 420–425. [Google Scholar] [CrossRef]
- Yanagida, T.; Kim, K.J.; Kamada, K.; Yokota, Y.; Maeo, S.; Yoshikawa, A.; Kawaguchi, N.; Fukuda, K.; Sarukura, N.; Chani, V. Growth, optical properties, and scintillation light yield of CaF2:Ce crystals with different Ce concentration. Jpn. J. Appl. Phys. 2010, 49, 032601. [Google Scholar] [CrossRef]
- Mühlig, C.; Triebel, W.; Stafast, H.; Letz, M. Influence of Na-related defects on ArF laser absorption in CaF2. Appl. Phys. B 2010, 99, 525–533. [Google Scholar] [CrossRef]
- Li, C.; Kang, X.; Han, W.; Zheng, W.; Su, L. Nanosecond laser-induced surface damage and material failure mechanism of single crystal CaF2 (111) at 355 nm. Appl. Surf. Sci. 2019, 480, 1070–1077. [Google Scholar] [CrossRef]
- Shao, J.; Liang, X.; You, L.; Pan, N.; Lin, Y.; Wang, S.; Deng, Z.; Fang, X.; Wang, X. Laser-induced damage and periodic stripe structures of a CaF2 single crystal by an ArF excimer laser. Chin. Opt. Lett. 2020, 18, 021403. [Google Scholar] [CrossRef]
- Wang, J.; Cox, G.P.; Donohue, K.J.; Davis, R.W.; Shi, Y.; Cushman, C.V.; Rezikyan, A.; Moore, G.G.; Tingley, J.E.; Becken, K.J.; et al. Laser-induced damage of CaF2 optics at 193 nm. In Laser-Induced Damage in Optical Materials 2023; SPIE: Bellingham, WA, USA, 2023; Volume 12726, pp. 127260G-1–127260G-10. [Google Scholar]
- Wang, J.; Piché, F.; Fanning, E.M.; Glebov, A.L.; Leisher, P.O. Surface and bulk damage resistance of calcium fluoride optics assessed by X-ray induced color centers. In Components and Packaging for Laser Systems IX; SPIE: Bellingham, WA, USA, 2023; Volume 12402, pp. 1240208-1–1240208-8. [Google Scholar]
- Elswie, I.; Lazarevic, Z.; Radojevic, V.; Gilic, M.; Rabasovic, M.; Sevic, D.; Romcevic, N. The Bridgman method growth and spectroscopic characterization of calcium fluoride single crystals. Sci. Sinter. 2016, 48, 333–341. [Google Scholar] [CrossRef]
- Xu, J.; Shi, M.; Lu, B.; Li, X.; Wu, A. Bridgman growth and characterization of calcium fluoride crystals. J. Cryst. Growth 2006, 292, 391–394. [Google Scholar] [CrossRef]
- Yonezawa, T.; Matsuo, K.; Nakayama, J.; Kawamoto, Y. Behaviors of metal-oxide impurities in CaF2 and BaF2 single-crystals grown with PbF2 scavenger by Stockbarger’s method. J. Cryst. Growth 2003, 258, 385–393. [Google Scholar] [CrossRef]
- Pandurangappa, C.; Lakshminarasappa, B.N. Spectroscopic studies of γ-rayed CaF2:Sr. J. Lumin. 2013, 138, 61–64. [Google Scholar] [CrossRef]
- ISO 21254–1; Lasers and Laser-Related Equipment—Test Methods for Laser-Induced Damage Threshold. ISO Standard: Geneva, Switzerland, 2011.
- Huang, J.; Liu, H.; Wang, F.; Ye, X.; Sun, L.; Zhou, X.; Wu, Z.; Jiang, X.; Zheng, W.; Sun, D. Influence of bulk defects on bulk damage performance of fused silica optics at 355 nm nanosecond pulse laser. Opt. Express 2017, 25, 33416–33428. [Google Scholar] [CrossRef]
- Shao, J.; Liang, X.; Lin, Y.; Wang, S.; Deng, Z.; Meng, G.; Fang, X. KrF excimer laser induced damage and its mechanism of CaF2 single crystal with (1 1 1), (1 1 0) and (1 0 0) planes. Appl. Surf. Sci. 2022, 586, 152716. [Google Scholar] [CrossRef]
- Williams, R.T. Optically generated lattice defects in halide crystals. Opt. Eng. 1989, 28, 1024–1033. [Google Scholar]
- Beaumont, J.H.; Hayes, W.; Kirk, D.L.; Summers, G.P. An investigation of trapped holes and trapped excitons in alkaline earth fluorides. In Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences; Royal Society: London, UK, 1997; Volume 315, pp. 69–97. [Google Scholar]
- Cooke, D.W.; Bennett, B.L. Optical absorption and luminescence of 14-MeV neutron-irradiated CaF2 single crystals. J. Nucl. Mater. 2003, 321, 158–164. [Google Scholar] [CrossRef]
- Parker, S.; Song, K.; Catlow, C.; Stoneham, A. Geometry and charge distribution of H centres in the fluorite structure. J. Phys. C Solid State Phys. 1981, 14, 4009–4015. [Google Scholar] [CrossRef]
- Scouler, W.J.; Smakula, A. Coloration of pure and doped calcium fluoride crystals at 20 °C and −190 °C. Phys. Rev. 1960, 120, 1154–1161. [Google Scholar] [CrossRef]
- Orera, V.M.; Alcalá, R. Formation and size evolution of Ca colloids in additively colored CaF2. Phys. Status Solidi (A) 1976, 38, 621–627. [Google Scholar] [CrossRef]
- Izerrouken, M.; Guerbous, L.; Meftah, A. Colour centres formation in CaF2 single crystals by γ-rays and reactor neutrons. In Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment; Elsevier: Amsterdam, The Netherlands, 2010; Volume 621, pp. 68–70. [Google Scholar]
- Cramer, L.P.; Schubert, B.E.; Petite, P.S.; Langford, S.C.; Dickinson, J.T. Laser interactions with embedded Ca metal nanoparticles in single crystal CaF2. J. Appl. Phys. 2005, 76, 074307. [Google Scholar] [CrossRef]
- Hazem, R.; Izerrouken, M. Proton irradiation-induced defect aggregation and metallic nanoparticles in CaF2 single-crystal. Radiat. Phys. Chem. 2023, 204, 110643. [Google Scholar] [CrossRef]
Ra (nm) | RMS (nm) | |
---|---|---|
#1 | 0.2 | 0.2 |
#2 | 0.2 | 0.2 |
#3 | 0.2 | 0.2 |
Impurity Concentrations (ppm) | LIDTs (J/cm2) | |
---|---|---|
#1 | 10.10 | 3.25 |
#2 | 11.15 | 2.54 |
#3 | 20.55 | 7.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, P.; Jiang, D.; Kou, H.; Liu, R.; Wu, Q.; Zhang, Z.; Zhang, Z.; Shan, C.; Shao, C.; Lian, Y.; et al. Mechanism of Impurity Content in Degradation and Damage Characteristics of Calcium Fluoride Crystals by X-Ray and Deep-Ultraviolet Laser Irradiation. Photonics 2025, 12, 579. https://doi.org/10.3390/photonics12060579
Han P, Jiang D, Kou H, Liu R, Wu Q, Zhang Z, Zhang Z, Shan C, Shao C, Lian Y, et al. Mechanism of Impurity Content in Degradation and Damage Characteristics of Calcium Fluoride Crystals by X-Ray and Deep-Ultraviolet Laser Irradiation. Photonics. 2025; 12(6):579. https://doi.org/10.3390/photonics12060579
Chicago/Turabian StyleHan, Ping, Dapeng Jiang, Huamin Kou, Rongrong Liu, Qinghui Wu, Zhonghan Zhang, Zhen Zhang, Chong Shan, Chongyun Shao, Yafei Lian, and et al. 2025. "Mechanism of Impurity Content in Degradation and Damage Characteristics of Calcium Fluoride Crystals by X-Ray and Deep-Ultraviolet Laser Irradiation" Photonics 12, no. 6: 579. https://doi.org/10.3390/photonics12060579
APA StyleHan, P., Jiang, D., Kou, H., Liu, R., Wu, Q., Zhang, Z., Zhang, Z., Shan, C., Shao, C., Lian, Y., Zhao, Y., Peng, X., & Su, L. (2025). Mechanism of Impurity Content in Degradation and Damage Characteristics of Calcium Fluoride Crystals by X-Ray and Deep-Ultraviolet Laser Irradiation. Photonics, 12(6), 579. https://doi.org/10.3390/photonics12060579