Directional Excitation of Multi-Dimensional Coupled Topological Photonic States Based on Higher-Order Chiral Source
Abstract
:1. Introduction
2. Results and Disscussion
3. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Chong, Y.; Joannopoulos, J.D.; Soljačić, M. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 2008, 100, 013905. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Joannopoulos, J.D.; Soljačić, M. Topological photonics. Nat. Photonics 2014, 8, 821. [Google Scholar] [CrossRef]
- Weimann, S.; Kremer, M.; Plotnik, Y.; Lumer, Y.; Nolte, S.; Makris, K.G.; Segev, M.; Rechtsman, M.C.; Szameit, A. Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 2017, 16, 433. [Google Scholar] [CrossRef]
- Harari, G.; Bandres, M.A.; Lumer, Y.; Rechtsman, M.C.; Chong, Y.D.; Khajavikhan, M.; Christodoulides, D.N.; Segev, M. Topological insulator laser: Theory. Science 2018, 359, 6381. [Google Scholar] [CrossRef]
- Bandres, M.A.; Wittek, S.; Harari, G.; Parto, M.; Ren, J.; Segev, M.; Christodoulides, D.N.; Khajavikhan, M. Topological insulator laser: Experiments. Science 2018, 359, eaar4005. [Google Scholar] [CrossRef]
- Ozawa, T.; Price, H.M.; Amo, A.; Goldman, N.; Hafezi, M.; Lu, L.; Rechtsman, M.C.; Schuster, D.; Simon, J.; Zilberberg, O.; et al. Topological photonics. Rev. Mod. Phys. 2019, 91, 015006. [Google Scholar] [CrossRef]
- Khanikaev, A.B.; Alù, A. Topological photonics: Robustness and beyond. Nat. Commun. 2024, 15, 931. [Google Scholar] [CrossRef]
- Shi, A.; Bao, L.; Peng, P.; Ning, J.; Wang, Z.; Liu, J. Non-Hermitian Floquet higher-order topological states in two-dimensional quasicrystals. Phys. Rev. B 2025, 111, 094109. [Google Scholar] [CrossRef]
- Ni, X.; Yin, S.; Li, H.; Alù, A. Topological wave phenomena in photonic time quasicrystals. Phys. Rev. B 2025, 111, 125421. [Google Scholar] [CrossRef]
- Zhang, Z.; Lan, Z.; Xu, P.; Wu, L.; Chen, M.; Sha, W.; Xu, Y.; Qin, Y. Observation of spatiotemporal dynamics for topological surface states with on-demand dispersion. Photon. Res. 2024, 12, 2919–2930. [Google Scholar] [CrossRef]
- Tang, G.; He, X.; Shi, F.L.; Liu, J.; Chen, X.; Dong, J. Topological photonic crystals: Physics, designs, and applications. Laser Photonics Rev. 2022, 16, 2100300. [Google Scholar] [CrossRef]
- Lan, Z.; Chen, M.; Gao, F.; Zhang, S.; Sha, W.E. A brief review of topological photonics in one, two, and three dimensions. Rev. Phys. 2022, 9, 100076. [Google Scholar] [CrossRef]
- Zeng, Y.; Chattopadhyay, U.; Zhu, B.; Qiang, B.; Li, J.; Jin, Y.; Li, L.; Davies, A.G.; Linfield, E.H.; Zhang, B.; et al. Electrically pumped topological laser with valley edge modes. Nature 2020, 578, 246. [Google Scholar] [CrossRef]
- Barik, S.; Karasahin, A.; Flower, C.; Cai, T.; Miyake, H.; DeGottardi, W.; Hafezi, M.; Waks, E. A topological quantum optics interface. Science 2018, 359, 666. [Google Scholar] [CrossRef]
- Blanco-Redondo, A.; Bell, B.; Oren, D.; Eggleton, B.J.; Segev, M. Topological protection of biphoton states. Science 2018, 362, 568. [Google Scholar] [CrossRef]
- Smirnova, D.; Kruk, S.; Leykam, D.; Melik-Gaykazyan, E.; Choi, D.Y.; Kivshar, Y. Third-harmonic generation in photonic topological metasurfaces. Phys. Rev. Lett. 2019, 123, 103901. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Willner, A.E.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 2012, 6, 488. [Google Scholar] [CrossRef]
- Nicolas, A.; Veissier, L.; Giner, L.; Giacobino, E.; Maxein, D.; Laurat, J. A quantum memory for orbital angular momentum photonic qubits. Nat. Photonics 2014, 8, 234. [Google Scholar] [CrossRef]
- Baresch, D.; Thomas, J.L.; Marchiano, R. Orbital angular momentum transfer to stably trapped elastic particles in acoustical vortex beams. Phys. Rev. Lett. 2018, 121, 074301. [Google Scholar] [CrossRef]
- Wu, L.; Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 2015, 114, 223901. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Smirnova, D.; Nori, F. Quantum spin Hall effect of light. Science 2015, 348, 1448. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yun, F.; Tao, X.; Wang, H.; Jiang, J.; Hu, X.; Hang, Z. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys. Rev. Lett. 2018, 120, 217401. [Google Scholar] [CrossRef]
- Peng, Y.; Shi, A.; Peng, P.; Liu, J. Pseudospin-induced asymmetric field in non-Hermitian photonic crystals with multiple topological transitions. Phys. Rev. B 2025, 111, 085148. [Google Scholar] [CrossRef]
- Wu, X.; Meng, Y.; Tian, J.; Huang, Y.; Xiang, H.; Han, D.; Wen, W. Direct observation of valley-polarized topological edge states in designer surface plasmon crystals. Nat. Commun. 2017, 8, 1304. [Google Scholar] [CrossRef]
- Dong, J.; Chen, X.; Zhu, H.; Wang, Y.; Zhang, X. Valley Photonic Crystals for Control of Spin and Topology. Nat. Mater. 2017, 16, 298–302. [Google Scholar] [CrossRef]
- Yang, Y.; Yamagami, Y.; Yu, X.; Pitchappa, P.; Webber, J.; Zhang, B.; Fujita, M.; Nagatsuma, T.; Singh, R. Terahertz Topological Photonics for On-Chip Communication. Nat. Photonics 2020, 14, 446–451. [Google Scholar] [CrossRef]
- Lan, Z.; You, J.W.; Ren, Q.; Sha, W.E.I.; Panoiu, N.C. Second-Harmonic Generation via Double Topological Valley-Hall Kink Modes in All-Dielectric Photonic Crystals. Phys. Rev. A 2021, 103, L041502. [Google Scholar] [CrossRef]
- Wong, S.; Saba, M.; Hess, O.; Oh, S.S. Gapless Unidirectional Photonic Transport Using All-Dielectric Kagome Lattices. Phys. Rev. Res. 2020, 2, 012011. [Google Scholar] [CrossRef]
- Yan, B.; Liao, B.; Shi, F.; Xi, X.; Cao, Y.; Xiang, K.; Meng, Y.; Yang, L.; Zhu, Z.; Chen, J.; et al. Realization of Topology-Controlled Photonic Cavities in a Valley Photonic Crystal. Phys. Rev. Lett. 2025, 134, 033803. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.; Benalcazar, W.A.; Huang, S.; Collins, M.J.; Chen, K.P.; Hughes, T.L.; Rechtsman, M.C. Topological Protection of Photonic Mid-Gap Defect Modes. Nat. Photonics 2018, 12, 408–415. [Google Scholar] [CrossRef]
- Chen, X.; Deng, W.; Shi, F.; Zhao, F.; Chen, M.; Dong, J. Direct Observation of Corner States in Second-Order Topological Photonic Crystal Slabs. Phys. Rev. Lett. 2019, 122, 233902. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Su, G.; Wang, H.; Su, H.; Shen, X.; Zhan, P.; Lu, M.; Wang, Z.; Chen, Y. Visualization of Higher-Order Topological Insulating Phases in Two-Dimensional Dielectric Photonic Crystals. Phys. Rev. Lett. 2019, 122, 233903. [Google Scholar] [CrossRef] [PubMed]
- Ota, Y.; Liu, F.; Katsumi, R.; Watanabe, K.; Wakabayashi, K.; Arakawa, Y.; Iwamoto, S. Photonic Crystal Nanocavity Based on a Topological Corner State. Optica 2019, 6, 786. [Google Scholar] [CrossRef]
- Li, M.; Zhirihin, D.; Gorlach, M.; Ni, X.; Filonov, D.; Slobozhanyuk, A.; Alù, A.; Khanikaev, A.B. Higher-Order Topological States in Photonic Kagome Crystals with Long-Range Interactions. Nat. Photonics 2020, 14, 89–94. [Google Scholar] [CrossRef]
- Kim, M.; Jacob, Z.; Rho, J. Recent Advances in 2D, 3D and Higher-Order Topological Photonics. Light Sci. Appl. 2020, 9, 130. [Google Scholar] [CrossRef]
- Xie, B.; Su, G.; Wang, H.; Liu, F.; Hu, L.; Yu, S.; Zhan, P.; Lu, M.; Wang, Z.; Chen, Y. Higher-Order Quantum Spin Hall Effect in a Photonic Crystal. Nat. Commun. 2020, 11, 3768. [Google Scholar] [CrossRef]
- Guo, K.; Wu, J.; Chen, F.; Zhou, K.; Liu, S.; Guo, Z. Second Harmonic Generation Enhancement and Directional Emission from Topological Corner State Based on the Quantum Spin Hall Effect. Opt. Express 2021, 29, 26841. [Google Scholar] [CrossRef]
- Su, G.; Huang, R.; Jia, S.; He, J.; Song, Z.; Hu, J.; Lu, M.; Liu, F.; Zhan, P. Space- and Frequency-Division Multiplexing in Photonic Second-Order Topological Insulators. Photonics Res. 2024, 12, 2323. [Google Scholar] [CrossRef]
- Hu, Z.; Bongiovanni, D.; Wang, Z.; Wang, X.; Song, D.; Xu, J.; Buljan, H.; Morandotti, R.; Chen, Z. Topological orbital angular momentum extraction and twofold protection of vortex transport. Nat. Photonics 2025, 19, 162–169. [Google Scholar] [CrossRef]
- Deng, W.; Chen, X.; Chen, W.; Zhao, F.; Dong, J. Vortex index identification and unidirectional propagation in Kagome photonic crystals. Nanophotonics 2019, 8, 833–840. [Google Scholar] [CrossRef]
- Shi, A.; Yan, B.; Ge, R.; Xie, J.; Peng, Y.; Li, H.; Sha, W.; Liu, J. Coupled cavity-waveguide based on topological corner state and edge state. Opt. Lett. 2021, 46, 1089. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; He, J.; Ye, X.; Yao, H.; Li, Y.; Hu, J.; Lu, M.; Zhan, P.; Liu, F. Tailored Triggering of High-Quality Multi-Dimensional Coupled Topological States in Valley Photonic Crystals. Nanomaterials 2024, 14, 885. [Google Scholar] [CrossRef]
- Gao, Y.; He, Y.; Si, J.; Subinuer, R.; Jin, M.; He, Y.; Yang, M. Waveguide–cavity coupling system based on topological edge states and corner states in kagome photonic crystals. Adv. Quantum Technol. 2024, 7, 2300265. [Google Scholar] [CrossRef]
- Lera, N.; Torrent, D.; San-Jose, P.; Alvarez, J.V. Valley Hall phases in kagome lattices. Phys. Rev. B 2019, 99, 134102. [Google Scholar] [CrossRef]
- Benalcazar, W.A.; Lia, T.; Hughes, T.L. Quantization of fractional corner charge in C n-symmetric higher-order topological crystalline insulators. Phys. Rev. B 2019, 99, 245151. [Google Scholar] [CrossRef]
- Wang, H.; Liang, L.; Jiang, B.; Hu, J.; Lu, X.; Jiang, J. Higher-order topological phases in tunable C3 symmetric photonic crystals. Photonics Res. 2021, 9, 1854–1864. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, L.; Lan, Z.; Sha, W. Local orbital-angular-momentum dependent surface states with topological protection. Opt. Express 2020, 28, 14428–14435. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Li, Y.; Fan, Y.; Zhao, X.; Ding, L.; Yuan, X.; Ji, B.; Hu, J.; Liu, L.; Su, G.; et al. Directional Excitation of Multi-Dimensional Coupled Topological Photonic States Based on Higher-Order Chiral Source. Photonics 2025, 12, 488. https://doi.org/10.3390/photonics12050488
He J, Li Y, Fan Y, Zhao X, Ding L, Yuan X, Ji B, Hu J, Liu L, Su G, et al. Directional Excitation of Multi-Dimensional Coupled Topological Photonic States Based on Higher-Order Chiral Source. Photonics. 2025; 12(5):488. https://doi.org/10.3390/photonics12050488
Chicago/Turabian StyleHe, Jiangle, Yaxuan Li, Yangyang Fan, Xinwen Zhao, Lin Ding, Xueqi Yuan, Beijia Ji, Junzheng Hu, Lifu Liu, Guangxu Su, and et al. 2025. "Directional Excitation of Multi-Dimensional Coupled Topological Photonic States Based on Higher-Order Chiral Source" Photonics 12, no. 5: 488. https://doi.org/10.3390/photonics12050488
APA StyleHe, J., Li, Y., Fan, Y., Zhao, X., Ding, L., Yuan, X., Ji, B., Hu, J., Liu, L., Su, G., Zhan, P., & Liu, F. (2025). Directional Excitation of Multi-Dimensional Coupled Topological Photonic States Based on Higher-Order Chiral Source. Photonics, 12(5), 488. https://doi.org/10.3390/photonics12050488