Analysis of Nutritional Content in Rice Seeds Based on Near-Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Samples and Quantitative Analysis
2.2. Spectral Data Acquisition
2.3. Data Preprocessing
2.4. Prediction Models
2.4.1. PLS Prediction Model
2.4.2. OPLS Prediction Model
2.4.3. ANN Prediction Mode
2.5. Evaluation Metrics
3. Results
3.1. Analysis of Near-Infrared Absorption Characteristics in Rice Seeds
- 1150–1220 nm Band
- 1410–1450 nm Band
- 1510–1540 nm Band
- 1660–1800 nm Band
- 1910–1950 nm Band
3.2. Effects of Raw Spectral Preprocessing
Advanced Preprocessing Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, Y. Analysis of high-yield rice cultivation techniques and pest control measures. Seed Sci. Technol. 2025, 43, 141–143. [Google Scholar] [CrossRef]
- Yang, H.E.; Kim, N.W.; Lee, H.G.; Kim, M.J.; Sang, W.G.; Yang, C.; Mo, C. Prediction of protein content in paddy rice (Oryza sativa L.) combining near-infrared spectroscopy and deep-learning algorithm. Front. Plant Sci. 2024, 15, 1398762. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hou, M.; Cui, S.; Chen, M.; Liu, Y.; Li, X.; Chen, H.; Liu, L. Near-infrared analysis of flavonoid content in peanut kernels. Spectrosc. Spectr. Anal. 2024, 44, 1112–1116. [Google Scholar]
- Zhang, J.; Xu, B.; Feng, H.K.; Jing, X.; Wang, J.J.; Ming, S.K.; Fu, Y.Q.; Song, X.Y. Monitoring nitrogen nutrition and grain protein content in rice based on ensemble learning. Spectrosc. Spectr. Anal. 2022, 42, 1956–1964. [Google Scholar]
- Zhang, L.; Wang, H.; Cai, L.; Yu, C.; Sun, T. Rapid and nondestructive detection of hollow defects in pecan nuts based on near-infrared spectroscopy and voting method. J. Food Compos. Anal. 2025, 141, 107381. [Google Scholar] [CrossRef]
- Bao, X.; Huang, D.; Yang, B.; Li, J.; Opeyemi, A.T.; Wu, R.; Cheng, Z. Combining deep convolutional generative adversarial networks with visible-near infrared hyperspectral reflectance to improve prediction accuracy of anthocyanin content in rice seeds. Food Control 2025, 174, 111218. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Z.; Wang, S.; Yue, M.; Zhang, S.; Peng, H.; Yin, X.; Du, J.; Ma, C. Comparative study on portable near-infrared and visible light spectrometers for detecting water content in rice. Spectrosc. Spectr. Anal. 2023, 43, 2059–2066. [Google Scholar]
- Guo, Z.; Wang, L.; Jin, L.; Zheng, C. Detection of protein and fat content in dairy products based on near-infrared transmission spectroscopy. Optoelectron. Laser 2013, 24, 1163–1168. [Google Scholar]
- Armstrong, P.R. Rapid single-kernel NIR measurement of grain and oil-seed attributes. Appl. Eng. Agric. 2006, 22, 767–772. [Google Scholar] [CrossRef]
- Sringarm, C.; Numthuam, S.; Jiamyangyuen, S.; Kittiwachana, S.; Saeys, W.; Rungchang, S. Classification of industrial tapioca starch hydrolysis products based on their brix and dextrose equivalent values using near-infrared spectroscopy. J. Sci. Food Agric. 2024, 104, 7249–7257. [Google Scholar] [CrossRef] [PubMed]
- Taghinezhad, E.; Szumny, A.; Figiel, A.; Amoghin, M.L.; Mirzazadeh, A.; Blasco, J.; Mazurek, S.; Castillo-Gironés, S. The potential application of HSI and VIS/NIR spectroscopy for non-invasive detection of starch gelatinization and head rice yield during parboiling and drying process. J. Food Compos. Anal. 2025, 142, 107443. [Google Scholar] [CrossRef]
- Zhong, L.; Fan, Y.; Wu, Y.; Gao, Y.; Gao, Z.; Zhou, A.; Shao, Q.; Zhang, A. Data fusion strategy for rapid prediction of glyceryl trioleate and polysaccharide content in Ganoderma lucidum spore powder based on near-infrared spectroscopy and hyperspectral imaging. J. Food Compos. Anal. 2025, 141, 107403. [Google Scholar] [CrossRef]
- Jin, W.; Cao, N.; Zhu, M.; Chen, W.; Zhang, P.; Zhao, Q.; Liang, J.; Yu, Y. Study on the non-destructive classification of rice seed vitality based on near-infrared supercontinuum laser spectroscopy. Chin. Opt. 2020, 13, 1032–1043. [Google Scholar]
- Liu, Q.; Du, Y.; Jiang, J.; Chen, S.; Hu, S.; Xie, J. Application of Savitzky-Golay smoothing combined with multivariate scatter correction in infrared spectroscopy data preprocessing for formaldehyde-fixed deep vein thrombosis. Shandong Chem. Ind. 2024, 53, 126–130. [Google Scholar] [CrossRef]
- Li, C.; Wang, N.; Liu, J.; Wu, S.; Fu, W.; Ren, K. Spectral confocal shift measurement method analysis and research based on multivariate scatter correction. Infrared Laser Eng. 2025, 54, 231–240. [Google Scholar]
- Zhang, Z.; Yan, C.; Yue, C.; An, D.; Liu, X.; Wang, M.; Zhang, T.; Li, H. Prediction of methanol content in biodiesel using near-infrared spectroscopy combined with partial least squares method. Phys. Chem. Test.-Chem. Ed. 2024, 60, 606–611. [Google Scholar]
- Forsgren, E.; Bjorkblom, B.; Trygg, J.; Jonsson, P. OPLS-Based Multiclass Classification and Data-Driven Interclass Relationship Discovery. J. Chem. Inf. Model. 2025, 65, 1762–1770. [Google Scholar] [CrossRef] [PubMed]
- Danyluik, M.; Zeighami, Y.; Mukora, A.; Lepage, M.; Shah, J.; Joober, R.; Misic, B.; Iturria-Medina, Y.; Chakravarty, M.M. Evaluating permutation-based inference for partial least squares analysis of neuroimaging data. Imaging Neurosci. 2025, 3, p.imag_a_00434. [Google Scholar] [CrossRef]
- Chen, J.; Li, M.; Pan, T.; Pang, L.; Yao, L.; Zhang, J. Rapid and non-destructive analysis for the identification of multi-grain rice seeds with near-infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 179–185. [Google Scholar] [CrossRef] [PubMed]
Method | FatR2 | FatQ2 | RMSECV | RMSE | StarchR2 | StarchQ2 | RMSECV | RMSE | ProteinR2 | ProteinQ2 | RMSE | RMSECV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Orgin | Pls | 0.782 | 0.604 | 0.371 | 0.3834 | 0.760 | 0.639 | 0.365 | 0.3721 | 0.284 | 0.0799 | 0.3659 | 0.364 |
Opls | 0.789 | 0.583 | 0.327 | 0.2865 | 0.714 | 0.615 | 0.303 | 0.2461 | 0.439 | 0.179 | 0.2523 | 0.311 | |
ANN | 0.614 | 0.324 | 0.416 | 0.409 | 0.689 | 0.445 | 0.422 | 0.396 | 0.531 | 0.417 | 0.562 | 0.486 | |
savitzkygolay | Pls | 0.857 | 0.623 | 0.320 | 0.3312 | 0.790 | 0.652 | 0.356 | 0.3461 | 0.393 | 0.143 | 0.3417 | 0.323 |
Opls | 0.885 | 0.659 | 0.321 | 0.2416 | 0.785 | 0.651 | 0.311 | 0.2662 | 0.595 | 0.216 | 0.2518 | 0.307 | |
ANN | 0.659 | 0.433 | 0.359 | 0.368 | 0.736 | 0.452 | 0.364 | 0.287 | 0.611 | 0.469 | 0.371 | 0.364 | |
Moving Average | Pls | 0.588 | 0.313 | 0.416 | 0.2693 | 0.701 | 0.373 | 0.353 | 0.2756 | 0.388 | 0.115 | 0.2867 | 0.344 |
Opls | 0.649 | 0.221 | 0.325 | 0.1998 | 0.603 | 0.406 | 0.274 | 0.2516 | 0.334 | 0.130 | 0.2398 | 0.269 | |
ANN | 0.590 | 0.464 | 0.623 | 0.641 | 0.691 | 0.549 | 0.661 | 0.569 | 0.798 | 0.650 | 0.354 | 0.319 | |
GAUSS | Pls | 0.466 | 0.147 | 0.369 | 0.2856 | 0.690 | 0.345 | 0.424 | 0.2466 | 0.383 | 0.159 | 0.2859 | 0.295 |
Opls | 0.917 | 0.649 | 0.257 | 0.1839 | 0.852 | 0.611 | 0.314 | 0.2062 | 0.790 | 0.346 | 0.2095 | 0.241 | |
ANN | 0.813 | 0.701 | 0.531 | 0.485 | 0.793 | 0.636 | 0.307 | 0.341 | 0.641 | 0.596 | 0.264 | 0.326 |
Method | FatR2 | FatQ2 | RMSECV | RMSE | StarchR2 | StarchQ2 | RMSECV | RMSE | ProteinR2 | ProteinQ2 | RMSE | RMSECV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GAUSS + First derivative | Pls | 0.719 | 0.554 | 0.276 | 0.2389 | 0.755 | 0.536 | 0.365 | 0.2453 | 0.431 | 0.219 | 0.2685 | 0.298 |
Opls | 0.892 | 0.750 | 0.233 | 0.1943 | 0.830 | 0.741 | 0.259 | 0.1783 | 0.763 | 0.691 | 0.1693 | 0.192 | |
ANN | 0.901 | 0.763 | 0.323 | 0.298 | 0.818 | 0.699 | 0.317 | 0.362 | 0.798 | 0.657 | 0.374 | 0.326 | |
Savitzkygolay + First derivative | Pls | 0.858 | 0.759 | 0.332 | 0.2366 | 0.751 | 0.523 | 0.341 | 0.2913 | 0.268 | 0.146 | 0.2730 | 0.269 |
Opls | 0.898 | 0.864 | 0.235 | 0.1144 | 0.821 | 0.801 | 0.249 | 0.1654 | 0.836 | 0.797 | 0.1215 | 0.189 | |
ANN | 0.793 | 0.762 | 0.413 | 0.398 | 0.926 | 0.897 | 0.264 | 0.223 | 0.846 | 0.648 | 0.268 | 0.211 | |
Moving Average + First derivative | Pls | 0.862 | 0.678 | 0.293 | 0.2619 | 0.746 | 0.560 | 0.311 | 0.2633 | 0.494 | 0.125 | 0.2731 | 0.195 |
Opls | 0.890 | 0.820 | 0.192 | 0.1139 | 0.925 | 0.829 | 0.295 | 0.1346 | 0.903 | 0.854 | 0.1548 | 0.233 | |
ANN | 0.911 | 0.869 | 0.251 | 0.198 | 0.861 | 0.719 | 0.264 | 0.315 | 0.746 | 0.693 | 0.168 | 0.264 | |
GAUSS + First derivative + MSC | Pls | 0.919 | 0.780 | 0.314 | 0.2699 | 0.828 | 0.620 | 0.289 | 0.2366 | 0.425 | 0.092 | 0.2760 | 0.269 |
Opls | 0.958 | 0.903 | 0.212 | 0.1942 | 0.951 | 0.901 | 0.201 | 0.1789 | 0.945 | 0.928 | 0.1887 | 0.235 | |
ANN | 0.902 | 0.830 | 0.326 | 0.264 | 0.849 | 0.793 | 0.235 | 0.324 | 0.897 | 0.729 | 0.235 | 0.198 | |
Savitzkygolay + First derivative + MSC | Pls | 0.913 | 0.614 | 0.344 | 0.2549 | 0.871 | 0.501 | 0.265 | 0.2651 | 0.745 | 0.658 | 0.2749 | 0.334 |
Opls | 0.928 | 0.873 | 0.188 | 0.1697 | 0.916 | 0.869 | 0.223 | 0.1814 | 0.934 | 0.898 | 0.1988 | 0.196 | |
ANN | 0.866 | 0.785 | 0.158 | 0.169 | 0.932 | 0.894 | 0.146 | 0.209 | 0.876 | 0.826 | 0.303 | 0.295 | |
Moving Average + First derivative + MSC | Pls | 0.399 | 0.222 | 0.261 | 0.2519 | 0.583 | 0.309 | 0.276 | 0.2417 | 0.184 | 0.052 | 0.2557 | 0.233 |
Opls | 0.908 | 0.856 | 0.217 | 0.1986 | 0.935 | 0.881 | 0.212 | 0.1793 | 0.942 | 0.905 | 0.2160 | 0.134 | |
ANN | 0.932 | 0.916 | 0.365 | 0.322 | 0.942 | 0.896 | 0.317 | 0.246 | 0.865 | 0.843 | 0.222 | 0.296 |
Method | FatR2 | FatQ2 | RMSECV | RMSE | StarchR2 | StarchQ2 | RMSECV | RMSE | ProteinR2 | ProteinQ2 | RMSE | RMSECV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GAUSS + First derivative + SPA | Pls | 0.517 | 0.435 | 0.368 | 0.249 | 0.693 | 0.524 | 0.319 | 0.266 | 0.595 | 0.368 | 0.277 | 0.343 |
Opls | 0.946 | 0.797 | 0.342 | 0.287 | 0.863 | 0.819 | 0.266 | 0.320 | 0.871 | 0.723 | 0.305 | 0.290 | |
ANN | 0.922 | 0.843 | 0.298 | 0.247 | 0.908 | 0.789 | 0.301 | 0.296 | 0.867 | 0.799 | 0.335 | 0.276 | |
Savitzkygolay + First derivative + SPA | Pls | 0793 | 0.652 | 0.272 | 0.230 | 0.816 | 0.743 | 0.276 | 0.233 | 0.560 | 0.328 | 0.401 | 0.341 |
Opls | 0.917 | 0.843 | 0.317 | 0.198 | 0.872 | 0.788 | 0.267 | 0.355 | 0.923 | 0.840 | 0.355 | 0.264 | |
ANN | 0.866 | 0.783 | 0.275 | 0.257 | 0.938 | 0.865 | 0.236 | 0.270 | 0.872 | 0.754 | 0.332 | 0.286 | |
Moving Average + First derivative + SPA | Pls | 0.843 | 0.788 | 0.453 | 0.397 | 0.798 | 0.706 | 0.297 | 0.342 | 0.689 | 0.567 | 0.262 | 0.341 |
Opls | 0.903 | 0.738 | 0.258 | 0.271 | 0.939 | 0.907 | 0.193 | 0.156 | 0.913 | 0.875 | 0.147 | 0.190 | |
ANN | 0.877 | 0.759 | 0.256 | 0.204 | 0.902 | 0.813 | 0.244 | 0.306 | 0.896 | 0.842 | 0.156 | 0.149 | |
G + First derivative + MSC + SPA | Pls | 0.923 | 0.823 | 0.217 | 0.1965 | 0.759 | 0.682 | 0.294 | 0.278 | 0.689 | 0.369 | 0.178 | 0.253 |
Opls | 0.964 | 0.916 | 0.264 | 0.205 | 0.974 | 0.933 | 0.217 | 0.196 | 0.958 | 0.930 | 0.168 | 0.249 | |
ANN | 0.943 | 0.893 | 0.235 | 0.330 | 0.905 | 0.875 | 0.309 | 0.248 | 0.901 | 0.798 | 0.263 | 0.254 | |
SG + First derivative + MSC + SPA | Pls | 0.907 | 0.749 | 0.266 | 0.198 | 0.914 | 0.823 | 0.246 | 0.319 | 0.698 | 0.498 | 0.261 | 0.296 |
Opls | 0.955 | 0.932 | 0.209 | 0.185 | 0.937 | 0.909 | 0.196 | 0.177 | 0.961 | 0.905 | 0.207 | 0.321 | |
ANN | 0.899 | 0.865 | 0.241 | 0.238 | 0.904 | 0.846 | 0.269 | 0.310 | 0.921 | 0.893 | 0.224 | 0.156 | |
MA + First derivative + MSC + SPA | Pls | 0.486 | 0.369 | 0.356 | 0.301 | 0.780 | 0.656 | 0.314 | 0.291 | 0.653 | 0.526 | 0.266 | 0.197 |
Opls | 0.971 | 0.926 | 0.186 | 0.175 | 0.956 | 0.907 | 0.146 | 0.159 | 0.967 | 0.936 | 0.156 | 0.164 | |
ANN | 0.942 | 0.901 | 0.284 | 0.324 | 0.922 | 0.907 | 0.329 | 0.261 | 0.936 | 0.910 | 0.206 | 0.159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, H.; Wang, J.; Lin, G.; Chen, J.; Xie, Z. Analysis of Nutritional Content in Rice Seeds Based on Near-Infrared Spectroscopy. Photonics 2025, 12, 481. https://doi.org/10.3390/photonics12050481
Kong H, Wang J, Lin G, Chen J, Xie Z. Analysis of Nutritional Content in Rice Seeds Based on Near-Infrared Spectroscopy. Photonics. 2025; 12(5):481. https://doi.org/10.3390/photonics12050481
Chicago/Turabian StyleKong, Hengyuan, Jianing Wang, Guanyu Lin, Jianbo Chen, and Zhitao Xie. 2025. "Analysis of Nutritional Content in Rice Seeds Based on Near-Infrared Spectroscopy" Photonics 12, no. 5: 481. https://doi.org/10.3390/photonics12050481
APA StyleKong, H., Wang, J., Lin, G., Chen, J., & Xie, Z. (2025). Analysis of Nutritional Content in Rice Seeds Based on Near-Infrared Spectroscopy. Photonics, 12(5), 481. https://doi.org/10.3390/photonics12050481