Compact and Ultra-Broadband 3 dB Power Splitter Based on Segmented Adiabatic Tapered Rib Waveguides
Abstract
1. Introduction
2. Design and Simulation
3. Fabrication and Characterization
4. Discussions
Ref. | Length (μm) | CD 1 (nm) | Bandwidth (nm) | IL (dB) | Fabrication |
---|---|---|---|---|---|
[23] | 40 | 200 | 1470–1570 M | <0.1 | lithography |
[30] | 5 | 30 | 1200–1700 S/1530–1600 M | <0.19 | EBL 2 |
[31] | 200 | 100 | 1260–1650 M | <0.5 | EBL |
[32] | 14 | 120 | 1500–1600 M | <0.25 | EBL |
[54] | 20 | 180 | 1480–1585 M | <0.5 | lithography |
This work | 23.4 | 150 | 1200–1600 S/1260–1360 M and 1525–1600 M | <0.4 | lithography |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DC | directional coupler |
SWG | subwavelength grating |
SOI | silicon-on-insulator |
OPA | optical phased array |
WDM | wavelength division multiplexing |
EC | edge coupler |
WG | waveguide |
MZM | Mach-Zehnder modulator |
SR | splitting ratio |
FDTD | finite-difference time-domain |
IL | insertion loss |
BOX | buried dioxide |
OSA | optical spectrum analyzer |
ASE | amplified spontaneous emission |
PC | polarization controller |
TE | transverse electric |
MZI | Mach-Zehnder interferometer |
ER | extinction ratio |
FSR | free spectral range |
AWG | arbitrary waveform generator |
DCA | digital communication analyzer |
NRZ | none-return-to-zero |
CD | critical dimension |
EBL | electron beam lithography |
References
- Shekhar, S.; Bogaerts, W.; Chrostowski, L.; Bowers, J.E.; Hochberg, M.; Soref, R.; Shastri, B.J. Roadmapping the next Generation of Silicon Photonics. Nat. Commun. 2024, 15, 751. [Google Scholar] [CrossRef] [PubMed]
- Timurdogan, E.; Su, Z.; Shiue, R.-J.; Byrd, M.J.; Poulton, C.V.; Jabon, K.; DeRose, C.; Moss, B.R.; Hosseini, E.S.; Duzevik, I.; et al. 400G Silicon Photonics Integrated Circuit Transceiver Chipsets for CPO, OBO, and Pluggable Modules. In Proceedings of the Optical Fiber Communication Conference (OFC) 2020, San Diego, CA, USA, 8–12 March 2020; Optica Publishing Group: San Diego, CA, USA, 2020; p. T3H.2. [Google Scholar]
- Chen, S.; You, M.; Yang, Y.; Jin, Y.; Lin, Z.; Li, Y.; Li, L.; Li, G.; Xie, Y.; Zhang, Z.; et al. A 50Gb/s CMOS Optical Receiver With Si-Photonics PD for High-Speed Low-Latency Chiplet I/O. IEEE Trans. Circuits Syst. I 2023, 70, 4271–4282. [Google Scholar] [CrossRef]
- Cao, X.; Zheng, S.; Long, Y.; Ruan, Z.; Luo, Y.; Wang, J. Mesh-Structure-Enabled Programmable Multitask Photonic Signal Processor on a Silicon Chip. ACS Photonics 2020, 7, 2658–2675. [Google Scholar] [CrossRef]
- Alam, M.S.; Li, X.; Jacques, M.; Xing, Z.; Samani, A.; El-Fiky, E.; Koh, P.-C.; Plant, D. Net 220 Gbps/λ IM/DD Transmssion in O-Band and C-Band With Silicon Photonic Traveling-Wave MZM. J. Light. Technol. 2021, 39, 4270–4278. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Li, J.; Yang, Y.; Du, J.; Song, Q.; Xu, K. Highly Efficient Silicon Modulator via a Slow-Wave Michelson Structure. Opt. Lett. 2024, 49, 3202. [Google Scholar] [CrossRef]
- Ning, N.; Wang, X.; Yu, H.; Huang, Q.; Wang, Y.; Yang, J. Comparison of Silicon Lattice-Filter-Based O-Band 1 × 8 (De)Multiplexers With Flat and Gaussian-Like Passbands. IEEE Photonics J. 2022, 14, 6615705. [Google Scholar] [CrossRef]
- Bao, P.; Cheng, Q.; Wei, J.; Talli, G.; Kuschnerov, M.; Penty, R.V. Harnessing Self-Heating Effect for Ultralow-Crosstalk Electro-Optic Mach–Zehnder Switches. Photon. Res. 2023, 11, 1757. [Google Scholar] [CrossRef]
- Li, A.; Wu, Y.; Wang, C.; Bao, F.; Yang, Z.; Pan, S. An Inversely Designed Integrated Spectrometer with Reconfigurable Performance and Ultra-Low Power Consumption. OEA 2024, 7, 240099. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, R.; Wang, Y.; Fu, W. Hybrid Integrated Silicon Nitride Optical Phased Array with Phase Calibration for Two-Dimensional Beam Steering. Opt. Express 2025, 33, 11123. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Shu, H.; Zhang, Z.; Yi, S.; Bai, B.; Wang, X.; Liu, J.; Zou, W. Optical Coherent Dot-Product Chip for Sophisticated Deep Learning Regression. Light. Sci. Appl. 2021, 10, 221. [Google Scholar] [CrossRef]
- Gupta, R.K.; Chandran, S.; Das, B.K. Wavelength-Independent Directional Couplers for Integrated Silicon Photonics. J. Light. Technol. 2017, 35, 4916–4923. [Google Scholar] [CrossRef]
- Yamada, H.; Chu, T.; Ishida, S.; Arakawa, Y. Optical Directional Coupler Based on Si-Wire Waveguides. IEEE Photonics Technol. Lett. 2005, 17, 585–587. [Google Scholar] [CrossRef]
- El-Saeed, A.H.; Elshazly, A.; Kobbi, H.; Magdziak, R.; Lepage, G.; Marchese, C.; Vaskasi, J.R.; Bipul, S.; Bode, D.; Filipcic, M.E.; et al. Low-Loss Silicon Directional Coupler with Arbitrary Coupling Ratios for Broadband Wavelength Operation Based on Bent Waveguides. J. Light. Technol. 2024, 42, 6011–6018. [Google Scholar] [CrossRef]
- Chen, G.F.R.; Ong, J.R.; Ang, T.Y.L.; Lim, S.T.; Png, C.E.; Tan, D.T.H. Broadband Silicon-On-Insulator Directional Couplers Using a Combination of Straight and Curved Waveguide Sections. Sci. Rep. 2017, 7, 7246. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, S.; Lim, A.E.-J.; Lo, G.-Q.; Galland, C.; Baehr-Jones, T.; Hochberg, M. A Compact and Low Loss Y-Junction for Submicron Silicon Waveguide. Opt. Express 2013, 21, 1310. [Google Scholar] [CrossRef]
- Lin, Z.; Shi, W. Broadband, Low-Loss Silicon Photonic Y-Junction with an Arbitrary Power Splitting Ratio. Opt. Express 2019, 27, 14338. [Google Scholar] [CrossRef]
- Hosseini, A.; Kwong, D.N.; Zhang, Y.; Subbaraman, H.; Xu, X.; Chen, R.T. 1× N Multimode Interference Beam Splitter Design Techniques for On-Chip Optical Interconnections. IEEE J. Select. Top. Quantum Electron. 2011, 17, 510–515. [Google Scholar] [CrossRef]
- Yao, R.; Li, H.; Zhang, B.; Chen, W.; Wang, P.; Dai, S.; Liu, Y.; Li, J.; Li, Y.; Fu, Q.; et al. Compact and Low-Insertion-Loss 1×N Power Splitter in Silicon Photonics. J. Light. Technol. 2021, 39, 6253–6259. [Google Scholar] [CrossRef]
- Chen, L.; Han, X.; Zhou, X.; Yin, R.; Yuan, M.; Xiao, H.; Nguyen, T.G.; Boes, A.; Ren, G.; Mitchell, A.; et al. Demonstration of a High-Performance 3 dB Power Splitter in Silicon Nitride Loaded Lithium Niobate on Insulator. Laser Photonics Rev. 2023, 17, 2300377. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Z.; Ma, M.; Yun, H.; Zhang, F.; Jaeger, N.A.F.; Chrostowski, L. Compact Broadband Directional Couplers Using Subwavelength Gratings. IEEE Photonics J. 2016, 8, 7101408. [Google Scholar] [CrossRef]
- Guo, D.; Chu, T. Compact Broadband Silicon 3 dB Coupler Based on Shortcuts to Adiabaticity. Opt. Lett. 2018, 43, 4795. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.H.; Kim, I.K.; Seok, T.J. Low-Loss and Broadband Silicon Photonic 3-dB Power Splitter with Enhanced Coupling of Shallow-Etched Rib Waveguides. Appl. Sci. 2020, 10, 4507. [Google Scholar] [CrossRef]
- Mao, D.; Alam, M.S.; Zhang, J.; Zhu, M.; Koh, P.-C.; Plant, D.V.; Wang, Y.; El-Fiky, E.; Xu, L.; Kumar, A.; et al. Adiabatic Coupler With Design-Intended Splitting Ratio. J. Light. Technol. 2019, 37, 6147–6155. [Google Scholar] [CrossRef]
- Xing, J.; Xiong, K.; Xu, H.; Li, Z.; Xiao, X.; Yu, J.; Yu, Y. Silicon-on-Insulator-Based Adiabatic Splitter with Simultaneous Tapering of Velocity and Coupling. Opt. Lett. 2013, 38, 2221. [Google Scholar] [CrossRef]
- Kim, I.K.; Kim, D.U.; Nguyen, V.H.; Han, S.; Seok, T.J. High-Performance and Compact Silicon Photonic 3-dB Adiabatic Coupler Based on Shortest Mode Transformer Method. IEEE Photonics J. 2021, 13, 6601106. [Google Scholar] [CrossRef]
- Hung, Y.-J.; Chen, C.-H.; Lu, G.-X.; Liang, F.-C.; Chung, H.-C.; Tseng, S.-Y. Compact and Robust 2 × 2 Fast Quasi-Adiabatic 3-dB Couplers on SOI Strip Waveguides. Opt. Laser Technol. 2022, 145, 107485. [Google Scholar] [CrossRef]
- Chung, H.-C.; Chen, C.-H.; Hung, Y.-J.; Tseng, S.-Y. Compact Polarization-Independent Quasi-Adiabatic 2×2.3 dB Coupler on Silicon. Opt. Express 2022, 30, 995. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.-C.; Chen, C.-H.; Lu, G.-X.; Hung, Y.-J.; Tseng, S.-Y. Adiabaticity Engineered Silicon Polarization Independent 3-dB Coupler for the O-Band. IEEE Photonics J. 2023, 15, 6601206. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; Wang, K.; Skafidas, E. Ultra-Broadband and Low-Loss 3 dB Optical Power Splitter Based on Adiabatic Tapered Silicon Waveguides. Opt. Lett. 2016, 41, 2053. [Google Scholar] [CrossRef]
- González-Andrade, D.; Lafforgue, C.; Durán-Valdeiglesias, E.; Le Roux, X.; Berciano, M.; Cassan, E.; Marris-Morini, D.; Velasco, A.V.; Cheben, P.; Vivien, L.; et al. Polarization- and Wavelength-Agnostic Nanophotonic Beam Splitter. Sci. Rep. 2019, 9, 3604. [Google Scholar] [CrossRef]
- Ozcan, C.; Mojahedi, M.; Stewart Aitchison, J. Short, Broadband, and Polarization-Insensitive Adiabatic Y-Junction Power Splitters. Opt. Lett. 2023, 48, 4901. [Google Scholar] [CrossRef] [PubMed]
- Tu, D.; Huang, X.; Yu, H.; Yin, Y.; Jiang, L.; Yu, Z.; Guan, H.; Li, Z. 400 Gbps PAM4 and 280 Gbps NRZ Silicon Photonic Transmissions With Fabrication-Tolerant Silicon Nitride CWDM4 Filters. J. Light. Technol. 2024, 42, 302–308. [Google Scholar] [CrossRef]
- Yu, H.; Patel, D.; Liu, W.; Malinge, Y.; Doussiere, P.; Lin, W.; Gupta, S.; Narayanan, K.; Hoshino, I.; Bresnehan, M.; et al. 800 Gbps Fully Integrated Silicon Photonics Transmitter for Data Center Applications. In Proceedings of the Optical Fiber Communication Conference (OFC) 2022, San Diego, CA, USA, 6–10 March 2022; Optica Publishing Group: San Diego, CA, USA, 2022; p. M2D.7. [Google Scholar]
- Kim, H.; Shin, H. Tailorable and Broadband On-Chip Optical Power Splitter. Appl. Sci. 2019, 9, 4239. [Google Scholar] [CrossRef]
- Brunetti, G.; Heuvink, R.; Schreuder, E.; Armenise, M.N.; Ciminelli, C. Silicon Nitride Spot Size Converter With Very Low-Loss Over the C-Band. IEEE Photon. Technol. Lett. 2023, 35, 1215–1218. [Google Scholar] [CrossRef]
- Puckett, M.W.; Krueger, N.A. Broadband, Ultrahigh Efficiency Fiber-to-Chip Coupling via Multilayer Nanophotonics. Appl. Opt. 2021, 60, 4340. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Zhao, W.; Zhang, L.; Dai, D. Polarization-Insensitive and Low-Loss O-Band Edge Coupler for Silicon Photonics. Opt. Lett. 2025, 50, 1699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Cao, X.; Wang, L.; Mu, C.; Li, M.; Zhu, N.; Chen, W. High-Efficiency and Compact Polarization-Insensitive Multi-Segment Linear Silicon Nitride Edge Coupler. Photonics 2023, 10, 510. [Google Scholar] [CrossRef]
- Bhandari, B.; Im, C.-S.; Lee, K.-P.; Kim, S.-M.; Oh, M.-C.; Lee, S.-S. Compact and Broadband Edge Coupler Based on Multi-Stage Silicon Nitride Tapers. IEEE Photonics J. 2020, 12, 6602511. [Google Scholar] [CrossRef]
- Papes, M.; Cheben, P.; Benedikovic, D.; Schmid, J.H.; Pond, J.; Halir, R.; Ortega-Moñux, A.; Wangüemert-Pérez, G.; Ye, W.N.; Xu, D.-X.; et al. Fiber-Chip Edge Coupler with Large Mode Size for Silicon Photonic Wire Waveguides. Opt. Express 2016, 24, 5026. [Google Scholar] [CrossRef]
- He, A.; Guo, X.; Wang, T.; Su, Y. Ultracompact Fiber-to-Chip Metamaterial Edge Coupler. ACS Photonics 2021, 8, 3226–3233. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, J.; Zhu, L.; Zhang, Q. Frequency- and Time-Domain Modeling and Characterization of PN Phase Shifters in All-Silicon Carrier-Depletion Modulators. J. Light. Technol. 2020, 38, 4462–4469. [Google Scholar] [CrossRef]
- Yue, H.; Chen, K.; Chu, T. Ultrahigh-Linearity Dual-Drive Scheme Using a Single Silicon Modulator. Opt. Lett. 2023, 48, 2995. [Google Scholar] [CrossRef]
- Ding, R.; Liu, Y.; Li, Q.; Yang, Y.; Ma, Y.; Padmaraju, K.; Lim, A.E.-J.; Lo, G.-Q.; Bergman, K.; Baehr-Jones, T.; et al. Design and Characterization of a 30-GHz Bandwidth Low-Power Silicon Traveling-Wave Modulator. Opt. Commun. 2014, 321, 124–133. [Google Scholar] [CrossRef]
- Patel, D.; Parvizi, M.; Ben-Hamida, N.; Rolland, C.; Plant, D.V. Frequency Response of Dual-Drive Silicon Photonic Modulators with Coupling between Electrodes. Opt. Express 2018, 26, 8904. [Google Scholar] [CrossRef]
- Breyne, L.; Ramon, H.; Van Gasse, K.; Verplaetse, M.; Lambrecht, J.; Vanhoecke, M.; Van Campenhout, J.; Roelkens, G.; Ossieur, P.; Yin, X.; et al. 50 GBd PAM4 Transmitter with a 55nm SiGe BiCMOS Driver and Silicon Photonic Segmented MZM. Opt. Express 2020, 28, 23950. [Google Scholar] [CrossRef] [PubMed]
- Nair, D.P.; Menard, M. A Compact Low-Loss Broadband Polarization Independent Silicon 50/50 Splitter. IEEE Photonics J. 2021, 13, 6600207. [Google Scholar] [CrossRef]
- Lu, Z.; Yun, H.; Wang, Y.; Chen, Z.; Zhang, F.; Jaeger, N.A.F.; Chrostowski, L. Broadband Silicon Photonic Directional Coupler Using Asymmetric-Waveguide Based Phase Control. Opt. Express 2015, 23, 3795. [Google Scholar] [CrossRef]
- Brunetti, G.; Marocco, G.; Benedetto, A.D.; Giorgio, A.; Armenise, M.N.; Ciminelli, C. Design of a Large Bandwidth 2 × 2 Interferometric Switching Cell Based on a Sub-Wavelength Grating. J. Opt. 2021, 23, 085801. [Google Scholar] [CrossRef]
- Yang, H.; Kuan, Y.; Xiang, T.; Zhu, Y.; Cai, X.; Liu, L. Broadband Polarization-Insensitive Optical Switch on Silicon-on-Insulator Platform. Opt. Express 2018, 26, 14340. [Google Scholar] [CrossRef]
- Sun, C.; Li, B.; Shi, W.; Lin, J.; Ding, N.; Tsang, H.K.; Zhang, A. Large-Scale and Broadband Silicon Nitride Optical Phased Arrays. IEEE J. Select. Top. Quantum Electron. 2022, 28, 8200710. [Google Scholar] [CrossRef]
- Wu, D.; Yu, B.; Kakdarvishi, V.; Yi, Y. Photonic Integrated Circuit with Multiple Waveguide Layers for Broadband High-Efficient 3D OPA. Opt. Lett. 2023, 48, 968. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, C.; Aitchison, J.S.; Mojahedi, M. Foundry-Processed Compact and Broadband Adiabatic Optical Power Splitters with Strong Fabrication Tolerance. Photonics 2023, 10, 1310. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Fu, X.; Yang, L. Compact and Ultra-Broadband 3 dB Power Splitter Based on Segmented Adiabatic Tapered Rib Waveguides. Photonics 2025, 12, 476. https://doi.org/10.3390/photonics12050476
Li Z, Fu X, Yang L. Compact and Ultra-Broadband 3 dB Power Splitter Based on Segmented Adiabatic Tapered Rib Waveguides. Photonics. 2025; 12(5):476. https://doi.org/10.3390/photonics12050476
Chicago/Turabian StyleLi, Zhen, Xin Fu, and Lin Yang. 2025. "Compact and Ultra-Broadband 3 dB Power Splitter Based on Segmented Adiabatic Tapered Rib Waveguides" Photonics 12, no. 5: 476. https://doi.org/10.3390/photonics12050476
APA StyleLi, Z., Fu, X., & Yang, L. (2025). Compact and Ultra-Broadband 3 dB Power Splitter Based on Segmented Adiabatic Tapered Rib Waveguides. Photonics, 12(5), 476. https://doi.org/10.3390/photonics12050476