Synthesis, Optical, and Photocatalytic Properties of the BiVO4 Semiconductor Nanoparticles with Tetragonal Zircon-Type Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals Used
2.2. Synthesis of Colloidal Tetragonal BiVO4
2.3. Characterization Methods and Instrumentation
2.4. Photocatalytic Experiment
3. Results
3.1. Optical Properties of Colloidal BiVO4 Nanoparticles
3.1.1. UV-Vis Absorption and Photoluminescent Spectra
3.1.2. XPS Spectra
3.1.3. Photocatalytic Performance
3.2. Structural and Microstructural Properties
4. Discussion
4.1. UV-Vis Absorption and Photoluminescent Spectra
4.2. XPS Spectra
4.3. Photocatalytic Performance
MO + hv → MO*
tz-BiVO4 + MO* → BiVO4 (e−) + MO+
tz-BiVO4 (e−) + O2 → ·O2−
·MO+ + O2/O2− → intermediate product,
4.4. Structural and Microstructural Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, J.; Qi, T.; Chu, B.; Peng, J.; Luo, F.; Qian, Z. Multifunctional nanostructured materials for multimodal cancer imaging and therapy. J. Nanosci. Nanotechnol. 2014, 14, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, A.; Armellini, C.; Piccolo, V.; Zur, L.; Ristic, D.; Jovanovic, D.J.; Vaccari, A.; Zonta, D.; Righini, G.C.; Ferrari, M. Colloidal crystals based portable chromatic sensor for butanol isomers and water mixtures detection. Opt. Mater. 2019, 90, 152–158. [Google Scholar] [CrossRef]
- Jovanović, D.J.; Chiappini, A.; Zur, L.; Gavrilović, T.V.; Tran, T.N.L.M.; Chiasera, A.; Lukowiak, A.; Smits, K.; Dramićanin, M.D.; Ferrari, M. Synthesis, structure and spectroscopic properties of luminescent GdVO4:Dy3+ and DyVO4 particles. Opt. Mater. 2018, 76, 308–316. [Google Scholar] [CrossRef]
- del Rosal, B.; Pérez-Delgado, A.; Carrasco, E.; Jovanović, D.J.; Dramićanin, M.D.; Dražić, G.; de la Fuente, Á.J.; Sanz-Rodriguez, F.; Jaque, D. Neodymium-based stoichiometric ultrasmall nanoparticles for multifunctional deep-tissue photothermal therapy. Adv. Opt. Mater. 2016, 4, 782–789. [Google Scholar] [CrossRef]
- Periša, J.; Antić, Ž.; Ma, C.-G.; Papan, J.; Jovanović, D.; Dramićanin, M.D. Pesticide-induced photoluminescence quenching of ultra-small Eu3+-activated phosphate and vanadate nanoparticles. J. Mater. Sci. Technol. 2020, 38, 197–204. [Google Scholar] [CrossRef]
- Ye, M.; Liu, X.; Iocozzia, J.; Liu, X.; Lin, Z. Nanostructured materials for high efficiency perovskite solar cells. In Nanomaterials for Sustainable Energy, 1st ed.; NanoScience and Technology; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–39. [Google Scholar] [CrossRef]
- Cheng, B.; Lou, H.; Zeng, Z.; Liu, Y.; Zeng, Q. Structural phase transition in BiVO4 nanosheets under high pressure. J. Phys. Chem. C 2024, 128, 12267–12273. [Google Scholar] [CrossRef]
- Jiang, S.P.; Shen, P.K. (Eds.) Nanostructured and Advanced Materials for Fuel Cells; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2013. [Google Scholar] [CrossRef]
- Jafari, T.; Moharreri, E.; Amin, A.S.; Miao, R.; Song, W.; Suib, S.L. Photocatalytic water splitting-the untamed dream: A review of recent advances. Molecules 2016, 21, 900. [Google Scholar] [CrossRef]
- Ghosh, S. Promising inorganic nanomaterials for future generation. In Applications of Multifunctional Nanomaterials, A Volume in Micro and Nano Technologies; Thomas, S., Kalarikkal, N., Abraham, A.R., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2023; pp. 247–263. [Google Scholar] [CrossRef]
- Chakravorty, A.; Roy, S. A review of photocatalysis, basic principles, processes, and materials. Sustain. Chem. Environ. 2024, 8, 100155. [Google Scholar] [CrossRef]
- Liu, X.; Tang, L.; Zhou, G.; Wang, J.; Song, M.; Hang, Y.; Ma, C.; Han, S.; Yan, M.; Lu, Z. In situ formation of BiVO4/MoS2 heterojunction: Enhanced photogenerated carrier transfer rate through electron transport channels constructed by graphene oxide. Mater. Res. Bull. 2023, 157, 112040. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, X.; Tao, R.; Jiang, Y.; Liu, H.; Cheng, L. Preparation of environmentally friendly BiVO4@SiO2 encapsulated yellow pigment with remarkable thermal and chemical stability. Inorganics 2024, 12, 17. [Google Scholar] [CrossRef]
- Ribeiro, F.W.P.; Moraes, F.C.; Pereira, E.C.; Marken, F.; Mascaro, L.H. New application for the BiVO4 photoanode: A photoelectroanalytical sensor for nitrite. Electrochem. Commun. 2015, 61, 1–4. [Google Scholar] [CrossRef]
- Gunawan, M.; Zhou, S.; Gunawan, D.; Zhang, Q.; Hart, J.N.; Amal, R.; Scott, J.; Valanoor, N.; Toe, C.Y. Ferroelectric materials as photoelectrocatalysts: Photoelectrode design rationale and strategies. J. Mater. Chem. A 2025, 13, 1612–1640. [Google Scholar] [CrossRef]
- Qu, Z.; Liu, P.; Yang, X.; Wang, F.; Zhang, W.; Fei, C. Microstructure and characteristic of BiVO4 prepared under different pH values: Photocatalytic efficiency and antibacterial activity. Materials 2016, 9, 129. [Google Scholar] [CrossRef]
- Obregón, S.; Colón, G. Heterostructured Er3+ doped BiVO4 with exceptional photocatalytic performance by cooperative electronic and luminescence sensitization mechanism. Appl. Catal. B Environ. 2014, 158–159, 242–249. [Google Scholar] [CrossRef]
- Gschwend, P.M.; Starsich, F.H.L.; Keitel, R.C.; Pratsinis, S.E. Nd3+-doped BiVO4 luminescent nanothermometers of high sensitivity. Chem. Commun. 2019, 55, 7147–7150. [Google Scholar] [CrossRef] [PubMed]
- Malathi, A.; Madhavan, J.; Ashokkumar, M.; Arunachalam, P. A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Appl. Catal. A Gen. 2018, 555, 47–74. [Google Scholar] [CrossRef]
- Sánchez-Martín, J.; Errandonea, D.; Pellicer-Porres, J.; Vázquez-Socorro, D.; Martínez-García, D.; Achary, S.N.; Popescu, C. Phase transitions of BiVO4 under high pressure and high temperature. J. Phys. Chem. C 2022, 126, 7755–7763. [Google Scholar] [CrossRef]
- Wu, Z.; Xue, Y.; He, X.; Li, Y.; Yang, X.; Wu, Z.; Cravotto, G. Surfactants-assisted preparation of BiVO4 with novel morphologies via microwave method and CdS decoration for enhanced photocatalytic properties. J. Hazard. Mater. 2020, 387, 122019. [Google Scholar] [CrossRef]
- Liu, J.; Li, B.; Kong, L.; Xiao, Q.; Huang, S. Surfactants-assisted morphological regulation of BiVO4 nanostructures for photocatalytic degradation of organic pollutants in wastewater. J. Phys. Chem. Solids 2023, 172, 111079. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Zhai, Y.; Yu, Y.; Guo, Y.; Hao, S. An optimization strategy for photo-fenton-like catalysts: Based on crystal plane engineering of BiVO4 and electron transfer properties of 0D CQDs. Environ. Res. 2023, 222, 115347. [Google Scholar] [CrossRef]
- Cheng, C.; Shi, Q.; Zhu, W.; Zhang, Y.; Su, W.; Lu, Z.; Yan, J.; Chen, K.; Wang, Q.; Li, J. Microwave-assisted synthesis of MoS2/BiVO4 heterojunction for photocatalytic degradation of tetracycline hydrochloride. Nanomaterials 2023, 13, 1522. [Google Scholar] [CrossRef]
- Wang, X.; Liu, H.; Wang, J.; Chang, L.; Song, N.; Yan, Z.; Wan, X. Additive-free solvothermal preparation, characterization, and photocatalytic activity of 3D butterfly-like BiVO4. Res. Chem. Intermed. 2015, 41, 2465–2477. [Google Scholar] [CrossRef]
- Kamble, G.S.; Ling, Y.-C. Solvothermal synthesis of facet-dependent BiVO4 photocatalyst with enhanced visible-light-driven photocatalytic degradation of organic pollutant: Assessment of toxicity by zebrafish embryo. Sci. Rep. 2020, 10, 12993. [Google Scholar] [CrossRef]
- Bulut, D.T. Exploring the dual role of BiVO4 nanoparticles: Unveiling enhanced antimicrobial efficacy and photocatalytic performance. J. Sol-Gel Sci. Technol. 2025, 114, 198–222. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Cao, V.D.; Nguyen, V.H.; Nong, L.X.; Luu, T.D.; Vo, D.-V.N.; Do, S.T.; Lam, T.D. Synthesized BiVO4 was by the co-precipitation method for Rhodamine B degradation under visible light. IOP Conf. Ser. Mater. Sci. Eng. 2019, 542, 012058. [Google Scholar] [CrossRef]
- Pramila, S.; Mallikarjunaswamy, C.; Lakshmi, R.V.; Nagaraju, G. BiVO4 nanoballs: A simple precipitation pathway, promising electrochemical sensor, and photodegradation under visible light. Ionics 2024, 30, 2819–2838. [Google Scholar] [CrossRef]
- Mansha, M.S.; Iqbal, T.; Farooq, M.; Riaz, K.N.; Afsheen, S.; Sultan, M.S.; Al-Zaqri, N.; Warad, I.; Masood, A. Facile hydrothermal synthesis of BiVO4 nanomaterials for degradation of industrial waste. Heliyon 2023, 9, e15978. [Google Scholar] [CrossRef]
- Tian, H.; Wu, H.; Fang, Y.; Li, R.; Huang, Y. Hydrothermal synthesis of m-BiVO4/t-BiVO4 heterostructure for organic pollutants degradation: Insight into the photocatalytic mechanism of exposed facets from crystalline phase controlling. J. Hazard. Mater. 2020, 399, 123159. [Google Scholar] [CrossRef]
- Lin, H.; Ye, H.; Chen, S.; Chen, Y. One-pot hydrothermal synthesis of BiPO4/BiVO4 with enhanced visible-light photocatalytic activities for methylene blue degradation. RSC Adv. 2014, 4, 10968–10974. [Google Scholar] [CrossRef]
- Rhoomi, Z.R.; Ahmed, D.S.; Jabir, M.S.; Balasubramanian, B.; Al-Garadi, M.A.; Swelum, A.A. Facile hydrothermal synthesis of BiVO4/MWCNTs nanocomposites and their influences on the biofilm formation of multidrug resistance Streptococcus mutans and Proteus mirabilis. ACS Omega 2023, 8, 37147–37161. [Google Scholar] [CrossRef]
- Niu, Y.T.; Guo, G.B. Synthesis, characterization, and photocatalytic activities of BiVO4 by carbon adsorption hydrothermal method. ZAAC 2020, 646, 1661–1665. [Google Scholar] [CrossRef]
- Sun, Q.; Qiao, F.; Zhou, T. CTAB assisted hydrothermal synthesis of oxygen vacancy enriched BiVO4 for enhanced photocatalytic hydrogen production. CrystEngComm 2025, 27, 948–955. [Google Scholar] [CrossRef]
- Wang, N.; Li, M.; Hu, Y.; Zhou, Z.; Yin, Z.; Fan, D.; Pang, Y.; Liu, Y.; Lu, Z.; Hai, J. Hydrothermal synthesis of BiVO4 square tubes using BiOIO3 nanosheets as self-sacrificing agents and their photoelectric properties. Mater. Lett. 2023, 340, 134189. [Google Scholar] [CrossRef]
- Zhang, H.M.; Liu, J.B.; Wang, H.; Zhang, W.X.; Yan, H. Rapid microwave-assisted synthesis of phase controlled BiVO4 nanocrystals and research on photocatalytic properties under visible light irradiation. J. Nanopart. Res. 2008, 10, 767–774. [Google Scholar] [CrossRef]
- Tu, G.-Z.; Chen, J.-Y.; Zhen, Z.-X.; Li, Y.; Chang, C.-W.; Chang, W.-J.; Chen, H.M.; Jiang, C.-M. Elucidating the epitaxial growth mechanisms of solution-derived BiVO4 thin films utilizing rapid thermal annealing. ACS Appl. Electron. Mater. 2024, 6, 1872–1885. [Google Scholar] [CrossRef]
- Cao, X.; Gu, Y.; Tian, H.; Fang, Y.; Johnson, D.; Ren, Z.; Chen, C.; Huang, Y. Microemulsion synthesis of ms/tz-BiVO4 composites: The effect of pH on crystal structure and photocatalytic performance. Ceram. Int. 2020, 46, 20788–20797. [Google Scholar] [CrossRef]
- Wei, Z.; Zhu, Y.; Guo, W.; Liu, J.; Jiang, Z.; Shangguan, W. Enhanced photocatalytic overall water splitting via MOF-derived tetragonal BiVO4-based solid solution. J. Chem. Eng. 2021, 414, 128911. [Google Scholar] [CrossRef]
- Luo, Y.; Tan, G.; Dong, G.; Zhang, L.; Huang, J.; Yang, W.; Zhao, C.; Re, H. Structural transformation of Sm3+ doped BiVO4 with high photocatalytic activity under simulated sun-light. Appl. Surf. Sci. 2015, 324, 505–511. [Google Scholar] [CrossRef]
- Obregón, S.; Lee, S.W.; Colón, G. Photocatalytic activity of tetragonal BiVO4 by Er3+ doping through a luminescence cooperative mechanism. Dalton Trans. 2014, 43, 311–316. [Google Scholar] [CrossRef]
- Luo, Y.; Tan, G.; Dong, G.; Ren, H.; Xia, A. A comprehensive investigation of tetragonal Gd-doped BiVO4 with enhanced photocatalytic performance under sun-light. Appl. Surf. Sci. 2016, 364, 156–165. [Google Scholar] [CrossRef]
- Huang, J.; Tan, G.; Zhang, L.; Ren, H.; Xia, A.; Zhao, C. Enhanced photocatalytic activity of tetragonal BiVO4: Influenced by rare earth ion Yb3+. Mater. Lett. 2014, 133, 20–23. [Google Scholar] [CrossRef]
- Dai, D.; Liang, X.; Zhang, B.; Wang, Y.; Wu, Q.; Bao, X.; Wang, Z.; Zheng, Z.; Cheng, H.; Dai, Y.; et al. Strain adjustment realizes the photocatalytic overall water splitting on tetragonal zircon BiVO4. Adv. Sci. 2022, 9, 2105299. [Google Scholar] [CrossRef]
- Xie, H.; Wang, M.; Sun, Z.; Lu, X.; Zhang, D.; Jin, S.; Chen, S. Efficient visible light photodegradation of BiVO4: Yb3+/Tm3+ with high content of tetragonal phase. Front. Chem. Sci. Eng. 2024, 18, 122. [Google Scholar] [CrossRef]
- Estrada, A.C.; Pinto, F.; Lopes, C.B.; Trindade, T. BiVO4-based magnetic heterostructures as photocatalysts for degradation of antibiotics in water. Mater. Proc. 2023, 14, 49. [Google Scholar] [CrossRef]
- Dolić, S.D.; Jovanović, D.J.; Smits, K.; Babić, B.; Marinović-Cincović, M.; Porobić, S.; Dramićanin, M.D. A comparative study of photocatalytically active nanocrystalline tetragonal zyrcon-type and monoclinic scheelite-type bismuth vanadate. Ceram. Int. 2018, 44, 17953–17961. [Google Scholar] [CrossRef]
- Dong, L.; Guo, S.; Zhu, S.; Xu, D.; Zhang, L.; Huo, M.; Yang, X. Sunlight responsive BiVO4 photocatalyst: Effects of pH on L-cysteine-assisted hydrothermal treatment and enhanced degradation of ofloxacin. Catal. Commun. 2011, 16, 250–254. [Google Scholar] [CrossRef]
- Tokunaga, S.; Kato, H.; Kudo, A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 2001, 13, 4624–4628. [Google Scholar] [CrossRef]
- Guisheng, L.; Dieqing, Z.; Jimmy, C.Y. Ordered mesoporous BiVO4 through nanocasting: A superior visible light-driven photocatalyst. Chem. Mater. 2008, 20, 3983–3992. [Google Scholar] [CrossRef]
- Sarkar, S.; Garain, S.; Mandal, D.; Chattopadhyay, K.K. Electro-active phase formation in PVDF—BiVO4 flexible nanocomposite films for high energy density storage application. RSC Adv. 2014, 4, 48220–48227. [Google Scholar] [CrossRef]
- Alvarez, S. A cartography of the van der Waals territories. Dalton Trans. 2013, 42, 8617–8636. [Google Scholar] [CrossRef]
- Lin, X.; Yu, L.; Yan, L.; Li, H.; Yan, Y.; Liu, C.; Zhai, H. Visible light photocatalytic activity of BiVO4 particles with different morphologies. Solid State Sci. 2014, 32, 61–66. [Google Scholar] [CrossRef]
- Zhao, H.; Wei, X.; Pei, Y.; Han, W. Enhancing photoelectrocatalytic efficiency of BiVO4 photoanodes by crystal orientation control. Nanomaterials 2024, 14, 1870. [Google Scholar] [CrossRef]
- Park, Y.; McDonald, K.J.; Choi, K.-S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 2013, 42, 2321–2337. [Google Scholar] [CrossRef]
- Kudo, A.; Omori, K.; Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 1999, 121, 11459–11467. [Google Scholar] [CrossRef]
- Pankove, J.I. Optical Processes in Semiconductors; Dover Publications Inc.: New York, NY, USA, 1975. [Google Scholar]
- Sarkar, S.; Das, N.S.; Chattopadhyay, K.K. Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering. Solid State Sci. 2014, 33, 58–66. [Google Scholar] [CrossRef]
- Walsh, A.; Yan, Y.; Huda, M.N.; Al-Jassim, M.M.; Wei, S.-H. Band edge electronic structure of BiVO4: Elucidating the role ofthe Bi s and V d orbitals. Chem. Mater. 2009, 21, 547–551. [Google Scholar] [CrossRef]
- Nikama, S.; Joshi, S. Irreversible phase transition in BiVO4 nanostructures synthesized by a polyol method and enhancement in photo degradation of methylene blue. RSC Adv. 2016, 6, 107463–107474. [Google Scholar] [CrossRef]
- Brus, L.E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409. [Google Scholar] [CrossRef]
- Liu, T.; Zhou, X.; Dupuisc, M.; Li, C. The nature of photogenerated charge separation among different crystal facets of BiVO4 studied by density functional theory. Phys. Chem. Chem. Phys. 2015, 17, 23503–23510. [Google Scholar] [CrossRef]
- Cao, Z.; Song, X.; Chen, X.; Sha, X.; Tang, J.; Yang, Z.; Lv, Y.; Jiang, C. In situ photoelectrochemical-induced surface reconstruction of BiVO4 photoanodes for solar fuel production. RRL Solar 2024, 8, 2400523. [Google Scholar] [CrossRef]
- Gu, F.-f.; Chen, G.-h.; Kang, X.-l.; Li, X.; Zhou, C.-r.; Yuan, C.-l.; Yun, Y.; Yang, T. A new BiVO4/Li0.5Sm0.5WO4 ultra-low firing high-k microwave dielectric ceramic. J. Mater. Sci. 2015, 50, 1295–1299. [Google Scholar] [CrossRef]
- Sajid, M.M.; Zhai, H.; Alomayri, T.; Khan, S.B.; Javed, Y.; Shad, N.A.; Ishaq, A.R.; Amin, N.; Zhang, Z. Platinum doped bismuth vanadate (Pt/BiVO4) for enhanced photocatalytic pollutant degradation using visible light irradiation. J. Mater. Sci. Mater. Electron. 2022, 33, 15116–15131. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Uchida, A.; Tominaga, Y.; Fujii, Y.; Yadav, A.A.; Kang, S.-W.; Suzuki, N.; Shitanda, I.; Kondo, T.; Itagaki, M.; et al. Visible light-assisted photocatalysis using spherical-shaped BiVO4 photocatalyst. Catalysts 2021, 11, 460. [Google Scholar] [CrossRef]
- Liang, X.; Wang, P.; Tong, F.; Liu, X.; Wang, C.; Wang, M.; Zhang, Q.; Wang, Z.; Liu, Y.; Zheng, Z.; et al. Bias-free solar water splitting by tetragonal zircon BiVO4 nanocrystal photocathode and monoclinic scheelite BiVO4 nanoporous photoanode. Adv. Funct. Mater. 2021, 31, 2008656. [Google Scholar] [CrossRef]
- Tolod, K.R.; Saboo, T.; Hernández, S.; Guzmán, H.; Castellino, M.; Irani, R.; Bogdanoff, P.; Abdi, F.F.; Quadrelli, E.A.; Russo, N. Insights on the surface chemistry of BiVO4 photoelectrodes and the role of Al overlayers on its water oxidation activity. Appl. Catal. A Gen. 2020, 605, 117796. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, L.; Li, J.; Du, J.; Zhang, Y.; Zhou, J. Synthesis and photocatalytic behavior of BiVO4 with decahedral structure. Ceram. Int. 2013, 39, 7461–7465. [Google Scholar] [CrossRef]
- Aghakhaninejad, S.; Rahimi, R.; Zargari, S. Application of BiVO4 nanocomposite for photodegradation of methyl orange. Proceedings 2019, 9, 52. [Google Scholar] [CrossRef]
- Lei, B.-X.; Zhang, P.; Wang, S.-N.; Li, Y.; Huang, G.-L.; Sun, Z.-F. Additive-free hydrothermal synthesis of novel bismuth vanadium oxide dendritic structures as highly efficient visible-light photocatalysts. Mater. Sci. Semicond. Process. 2015, 30, 429–434. [Google Scholar] [CrossRef]
- Lu, Y.; Shang, H.; Shi, F.; Chao, C.; Zhang, X.; Zhang, B. Preparation and efficient visible light-induced photocatalytic activity of m-BiVO4 with different morphologies. J. Phys. Chem. Solids 2015, 85, 44–50. [Google Scholar] [CrossRef]
- Ravidhas, C.; Josephine, A.J.; Sudhagar, P.; Devadoss, A.; Terashima, C.; Nakata, K.; Fujishima, A.; Raj, A.M.E.; Sanjeeviraja, C. Facile synthesis of nanostructured monoclinic bismuth vanadate by a co-precipitation method: Structural, optical and photocatalytic properties. Mater. Sci. Semicond. Process. 2015, 30, 343–351. [Google Scholar] [CrossRef]
- Diehm, P.M.; Goston, P.; Albe, K. Size-dependent lattice expansion in nanoparticles: Reality or anomaly? ChemPhysChem 2012, 13, 2443–2454. [Google Scholar] [CrossRef]
Time/Minutes | A-tz | B-tz | C-tz | Degussa P25 |
---|---|---|---|---|
0 | 0.399 | 0.394 | 0.38 | 0.369 |
10 | 0.306 | 0.301 | 0.342 | 0.380 |
30 | 0.295 | 0.274 | 0.32 | 0.345 |
60 | 0.285 | 0.265 | 0.306 | 0.362 |
90 | 0.29 | 0.256 | 0.292 | 0.381 |
120 | 0.269 | 0.244 | 0.285 | 0.38 |
180 | 0.258 | 0.229 | 0.270 | 0.315 |
240 | 0.230 | 0.212 | 0.227 | 0.346 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinković, D.; Righini, G.C.; Ferrari, M. Synthesis, Optical, and Photocatalytic Properties of the BiVO4 Semiconductor Nanoparticles with Tetragonal Zircon-Type Structure. Photonics 2025, 12, 438. https://doi.org/10.3390/photonics12050438
Marinković D, Righini GC, Ferrari M. Synthesis, Optical, and Photocatalytic Properties of the BiVO4 Semiconductor Nanoparticles with Tetragonal Zircon-Type Structure. Photonics. 2025; 12(5):438. https://doi.org/10.3390/photonics12050438
Chicago/Turabian StyleMarinković, Dragana, Giancarlo C. Righini, and Maurizio Ferrari. 2025. "Synthesis, Optical, and Photocatalytic Properties of the BiVO4 Semiconductor Nanoparticles with Tetragonal Zircon-Type Structure" Photonics 12, no. 5: 438. https://doi.org/10.3390/photonics12050438
APA StyleMarinković, D., Righini, G. C., & Ferrari, M. (2025). Synthesis, Optical, and Photocatalytic Properties of the BiVO4 Semiconductor Nanoparticles with Tetragonal Zircon-Type Structure. Photonics, 12(5), 438. https://doi.org/10.3390/photonics12050438