Recent Advances of Guided Mode Resonant Sensors Applied to Cancer Biomarker Detection
Abstract
:1. Introduction
2. Principle, Latest Advancements, and Biological Applications of GMR Technology
3. GMR Sensors for Cancer Biomarker Detection
4. Challenges and Future Perspectives
5. Conclusions
Funding
Conflicts of Interest
References
- International Agency for Research on Cancer. Global Cancer Burden Growing, amidst Mounting Need for Services. Saudi Med. J. 2024, 45, 326–327. [Google Scholar]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Larkins, M.C.; Thombare, A. Point-of-Care Testing. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK592387/ (accessed on 25 April 2025).
- Tantiwanichapan, K.; Jolivot, R.; Jomphoak, A.; Srisuai, N.; Chananonnawathorn, C.; Lertvanithpol, T.; Horprathum, M.; Boonruang, S. Demonstration of Cross Reaction in Hybrid Graphene Oxide/Tantalum Dioxide Guided Mode Resonance Sensor for Selective Volatile Organic Compound. Sci. Rep. 2023, 13, 10799. [Google Scholar] [CrossRef]
- Qu, X.; Hu, Y.; Xu, C.; Li, Y.; Zhang, L.; Huang, Q.; Moshirian-Farahi, S.S.; Zhang, J.; Xu, X.; Liao, M. Optical Sensors of Volatile Organic Compounds for Non-Invasive Diagnosis of Diseases. Chem. Eng. J. 2024, 485, 149804. [Google Scholar] [CrossRef]
- Pulumati, A.; Pulumati, A.; Dwarakanath, B.S.; Verma, A.; Papineni, R.V.L. Technological Advancements in Cancer Diagnostics: Improvements and Limitations. Cancer Rep. 2023, 6, e1764. [Google Scholar] [CrossRef]
- Masson, J.-F. Surface Plasmon Resonance Clinical Biosensors for Medical Diagnostics. ACS Sens. 2017, 2, 16–30. [Google Scholar] [CrossRef]
- Chakraborty, B.; Das, S.; Gupta, A.; Xiong, Y.; T-V, V.; Kizer, M.E.; Duan, J.; Chandrasekaran, A.R.; Wang, X. Aptamers for Viral Detection and Inhibition. ACS Infect. Dis. 2022, 8, 667–692. [Google Scholar] [CrossRef]
- Zaytseva, N.; Miller, W.; Goral, V.; Hepburn, J.; Fang, Y. Microfluidic Resonant Waveguide Grating Biosensor System for Whole Cell Sensing. Appl. Phys. Lett. 2011, 98, 163703. [Google Scholar] [CrossRef]
- Zourob, M.; Elwary, S.; Fan, X.; Mohr, S.; Goddard, N.J. Label-Free Detection with the Resonant Mirror Biosensor. In Biosensors and Biodetection; Rasooly, A., Herold, K.E., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2009; Volume 503, pp. 89–138. ISBN 978-1-60327-566-8. [Google Scholar] [CrossRef]
- Quaranta, G.; Basset, G.; Martin, O.J.F.; Gallinet, B. Recent Advances in Resonant Waveguide Gratings. Laser Photonics Rev. 2018, 12, 1800017. [Google Scholar] [CrossRef]
- Han, Q.; Pang, J.; Li, Y.; Sun, B.; Ibarlucea, B.; Liu, X.; Gemming, T.; Cheng, Q.; Zhang, S.; Liu, H.; et al. Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sens. 2021, 6, 3841–3881. [Google Scholar] [CrossRef]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to Biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.C.; Tseng, W.-C.; Tsai, W.-T.; Huang, C.-S. Handheld Biosensor System Based on a Gradient Grating Period Guided-Mode Resonance Device. Biosensors 2023, 14, 21. [Google Scholar] [CrossRef] [PubMed]
- Schmid, J.H.; Sinclair, W.; García, J.; Janz, S.; Lapointe, J.; Poitras, D.; Li, Y.; Mischki, T.; Lopinski, G.; Cheben, P.; et al. Silicon-on-Insulator Guided Mode Resonant Grating for Evanescent Field Molecular Sensing. Opt. Express 2009, 17, 18371–18380. [Google Scholar] [CrossRef]
- Yadav, A.; Mishra, M.; Tripathy, S.K.; Kumar, A.; Singh, O.P.; Sharan, P. Improved Surface Plasmon Effect in Ag-Based SPR Biosensor with Graphene and WS2: An Approach Towards Low Cost Urine-Glucose Detection. Plasmonics 2023, 18, 2273–2283. [Google Scholar] [CrossRef]
- Pandiaraj, S.; Muthuramamoorthy, M.; Alanazi, N.; Alodhayb, A.N. Enhanced Sensitivity of SPR-Based Biosensor for Waterborne Pathogen Monitoring: A Numerical Analysis. Plasmonics 2024, 19, 2913–2921. [Google Scholar] [CrossRef]
- Goodrum, R.; Li, H. Advances in Three Dimensional Metal Enhanced Fluorescence Based Biosensors Using Metal Nanomaterial and Nano-Patterned Surfaces. Biotechnol. J. 2024, 19, 2300519. [Google Scholar] [CrossRef]
- Sohrabi, H.; Mahmoudi-Maleki, R.; Majidi, M.R.; Oroojalian, F.; Mokhtarzadeh, A.A.; de la Guardia, M. Recent Advances in Nanostructure-Enhanced Optical Assays Focused on Luminescence-Based Biosensors for Detection of Cancer Biomarkers. TrAC Trends Anal. Chem. 2024, 176, 117753. [Google Scholar] [CrossRef]
- Boschi, A.; Iachetta, G.; Buonocore, S.; Hubarevich, A.; Hurtaud, J.; Moreddu, R.; d’Amora, M.; Formoso, M.B.; Tantussi, F.; Dipalo, M.; et al. Interferometric Biosensor for High Sensitive Label-Free Recording of HiPS Cardiomyocytes Contraction in Vitro. Nano Lett. 2024, 24, 6451–6458. [Google Scholar] [CrossRef]
- Fallahi, V.; Kordrostami, Z.; Hosseini, M. Cancer Detection by Photonic Crystal Optical Biosensors: Effect of Hexagonal Micro Ring Resonator Design. Mater. Sci. Semicond. Process. 2024, 174, 108188. [Google Scholar] [CrossRef]
- Gowdhami, D.; Balaji, V.R.; Murugan, M.; Robinson, S.; Hegde, G. Photonic Crystal Based Biosensors: An Overview. ISSS J. Micro Smart Syst. 2022, 11, 147–167. [Google Scholar] [CrossRef]
- Myersa, F.B.; Lee, L.P. Innovations in Optical Microfluidic Technologies for Point-of-Care Diagnostics. Lab Chip 2008, 8, 2015–2031. [Google Scholar] [CrossRef] [PubMed]
- Dobbs, D.W.; Gershkovich, I.; Cunningham, B.T. Fabrication of a Graded-Wavelength Guided-Mode Resonance Filter Photonic Crystal. Appl. Phys. Lett. 2006, 89, 123113. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Coates, E.; Silver, C.D.; Li, K.; Krauss, T.F. On the Reproducibility of Electron-Beam Lithographic Fabrication of Photonic Nanostructures. Sci. Rep. 2024, 14, 8703. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, R. The Guided-Mode Resonance Biosensor: Principles, Models, and Applications. In Proceedings of the 2020 IEEE Photonics Conference (IPC), Virtual, 28 September–1 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Foland, S.; Choi, K.H.; Lee, J.B. Pressure-Tunable Guided-Mode Resonance Sensor for Single-Wavelength Characterization. Opt. Lett. 2010, 35, 3871–3873. [Google Scholar] [CrossRef]
- Guo, T.; Evans, J.; Wang, N.; Jin, Y.; He, J.; Sun, Y. Guided Mode Resonance in a Low-Index Waveguide Layer. Appl. Sci. 2021, 11, 3312. [Google Scholar] [CrossRef]
- Koussi, E.-K. Micro Patterning of Complex Waveguide Resonant Gratings (WRG). Available online: https://www.researchgate.net/publication/351105934_Micro_patterning_of_complex_Waveguide_Resonant_Gratings_WRG (accessed on 23 April 2025).
- Magnusson, R.; Lee, K.J.; Hemmati, H.; Ko, Y.H.; Wenner, B.R.; Allen, J.W.; Allen, M.S.; Gimlin, S.; Weidanz, D.W. The Guided-Mode Resonance Biosensor: Principles, Technology, and Implementation. In Proceedings of the Frontiers in Biological Detection: From Nanosensors to Systems X, San Francisco, CA, USA, 28–29 January 2018. [Google Scholar] [CrossRef]
- Tibuleac, S.; Magnusson, R. Reflection and Transmission Guided-Mode Resonance Filters. J. Opt. Soc. Am. A 1997, 14, 1617–1626. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Sarkar, S.; Joseph, J. High Sensitivity Guided-Mode-Resonance Optical Sensor Employing Phase Detection. Sci. Rep. 2017, 7, 7607. [Google Scholar] [CrossRef]
- Hsu, H.-Y.; Lan, Y.-H.; Huang, C.-S. A Gradient Grating Period Guided-Mode Resonance Spectrometer. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Tabassum, S.; Kumar, R.; Dong, L. Nanopatterned Optical Fiber Tip for Guided Mode Resonance and Application to Gas Sensing. IEEE Sens. J. 2017, 17, 7262–7272. [Google Scholar] [CrossRef]
- You, L.; Zha, D.; Anslyn, E.V. Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing. Chem. Rev. 2015, 115, 7840–7892. [Google Scholar] [CrossRef]
- Luchansky, M.S.; Bailey, R.C. High-Q Optical Sensors for Chemical and Biological Analysis. Anal. Chem. 2011, 84, 793–821. [Google Scholar] [CrossRef] [PubMed]
- Barth, I.; Conteduca, D.; Reardon, C.; Johnson, S.; Krauss, T.F. Common-Path Interferometric Label-Free Protein Sensing with Resonant Dielectric Nanostructures. Light Sci. Appl. 2020, 9, 96. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.; Rajpal, S.; Kar, D.; Devinder, S.; Pandey, S.; Mishra, P.; Joseph, J. Guided Mode Resonance Immunosensor for Label-Free Detection of Pathogenic Bacteria Pseudomonas Aeruginosa. Biosens. Bioelectron. 2023, 241, 115695. [Google Scholar] [CrossRef]
- Wawro, D.; Ding, Y.; Gimlin, S.; Zimmerman, S.; Kearney, C.; Pawlowski, K.; Magnusson, R. Guided-Mode Resonance Sensors for Rapid Medical Diagnostic Testing Applications. In Proceedings of the Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications IX, San Jose, CA, USA, 24–25 January 2009; SPIE: Bellingham, WA, USA, 2009; Volume 7173, pp. 18–26. [Google Scholar] [CrossRef]
- Fang, Y.; Ferrie, A.M.; Fontaine, N.H.; Mauro, J.; Balakrishnan, J. Resonant Waveguide Grating Biosensor for Living Cell Sensing. Biophys. J. 2006, 91, 1925–1940. [Google Scholar] [CrossRef]
- Fang, Y.; Li, G.; Ferrie, A.M. Non-Invasive Optical Biosensor for Assaying Endogenous G Protein-Coupled Receptors in Adherent Cells. J. Pharmacol. Toxicol. Methods 2007, 55, 314–322. [Google Scholar] [CrossRef]
- Nezhadbadeh, S.; Neumann, A.; Zarkesh-Ha, P.; Brueck, S.R.J. Chirped-Grating Spectrometer-on-a-Chip. Opt. Express 2020, 28, 24501–24510. [Google Scholar] [CrossRef]
- Triggs, G.J.; Wang, Y.; Reardon, C.P.; Fischer, M.; Evans, G.J.O.; Krauss, T.F. Chirped Guided-Mode Resonance Biosensor. Optica 2017, 4, 229–234. [Google Scholar] [CrossRef]
- Morales, M.A.; Halpern, J.M. Guide to Selecting a Biorecognition Element for Biosensors. Bioconjug. Chem. 2018, 29, 3231–3239. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, B.; Guo, Z.; Wu, X. Guided Mode Resonance Sensors with Optimized Figure of Merit. Nanomaterials 2019, 9, 837. [Google Scholar] [CrossRef]
- Conteduca, D.; Arruda, G.S.; Barth, I.; Wang, Y.; Krauss, T.F.; Martins, E.R. Beyond Q: The Importance of the Resonance Amplitude for Photonic Sensors. ACS Photonics 2022, 9, 1757–1763. [Google Scholar] [CrossRef]
- Molaei-Yeznabad, A.; Bahador, H. Refractive Index-Based Optimized Ternary Photonic Crystal Biosensor for Ultra Precise Detection of Cancer Cells. Sens. Imaging 2025, 26, 36. [Google Scholar] [CrossRef]
- Juan-Colas, J.; Conteduca, D.; Barth, I.; Krauss, T.F. Guided Mode Resonances for Sensing and Imaging. EPJ Web Conf. 2019, 215, 11001. [Google Scholar] [CrossRef]
- Morris, K.; de Arruda, G.S.; Martins, A.; Coupe, S.T.; Martins, E.R.; Krauss, T.F.; Quinn, S.D. BPS2025-Ultrasensitive detection of Alzheimer’s disease biomarkers using a nanoparticle-enhanced resonant biosensor. Biophys. J. 2025, 124, 500a. [Google Scholar] [CrossRef]
- Kim, W.-J.; Kim, B.K.; Kim, A.; Huh, C.; Ah, C.S.; Kim, K.-H.; Hong, J.; Park, S.H.; Song, S.; Song, J.; et al. Response to Cardiac Markers in Human Serum Analyzed by Guided-Mode Resonance Biosensor. Anal. Chem. 2010, 82, 9686–9693. [Google Scholar] [CrossRef]
- Abdallah, M.G.; Buchanan-Vega, J.A.; Lee, K.J.; Wenner, B.R.; Allen, J.W.; Allen, M.S.; Gimlin, S.; Wawro Weidanz, D.; Magnusson, R. Quantification of Neuropeptide Y with Picomolar Sensitivity Enabled by Guided-Mode Resonance Biosensors. Sensors 2019, 20, 126. [Google Scholar] [CrossRef]
- Wawro, D.; Koulen, P.; Ding, Y.; Zimmerman, S.; Magnusson, R. Guided-Mode Resonance Sensor System for Early Detection of Ovarian Cancer. In Proceedings of the Optical Diagnostics and Sensing X: Toward Point-of-Care Diagnostics, San Francisco, CA, USA, 25–26 January 2010; SPIE: Bellingham, WA, USA, 2010; Volume 7572, pp. 85–90. [Google Scholar] [CrossRef]
- Tu, Y.-K.; Tsai, M.-Z.; Lee, I.-C.; Hsu, H.-Y.; Huang, C.-S. Integration of a Guided-Mode Resonance Filter with Microposts for in-Cell Protein Detection. Analyst 2016, 141, 4189–4195. [Google Scholar] [CrossRef]
- Lin, S.-F.; Ding, T.-J.; Liu, J.-T.; Lee, C.-C.; Yang, T.-H.; Chen, W.-Y.; Chang, J.-Y. A Guided Mode Resonance Aptasensor for Thrombin Detection. Sensors 2011, 11, 8953–8965. [Google Scholar] [CrossRef]
- Bakshi, S.; Sahoo, P.K.; Li, K.; Johnson, S.; Raxworthy, M.J.; Krauss, T.F. Nanophotonic and Hydrogel-Based Diagnostic System for the Monitoring of Chronic Wounds. Biosens. Bioelectron. 2023, 242, 115743. [Google Scholar] [CrossRef]
- Yang, J.-M.; Yang, N.-Z.; Chen, C.-H.; Huang, C.-S. Gradient Waveguide Thickness Guided-Mode Resonance Biosensor. Sensors 2021, 21, 376. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Hsieh, W.-H.; Chau, L.-K.; Chang, G.-E. Intensity-Detection-Based Guided-Mode-Resonance Optofluidic Biosensing System for Rapid, Low-Cost, Label-Free Detection. Sens. Actuators B Chem. 2017, 250, 659–666. [Google Scholar] [CrossRef]
- Yeh, C.-T.; Barshilia, D.; Hsieh, C.-J.; Li, H.-Y.; Hsieh, W.-H.; Chang, G.-E. Rapid and Highly Sensitive Detection of C-Reaction Protein Using Robust Self-Compensated Guided-Mode Resonance Biosensing System for Point-of-Care Applications. Biosensors 2021, 11, 523. [Google Scholar] [CrossRef] [PubMed]
- Race, C.M.; Kwon, L.E.; Foreman, M.T.; Huang, Q.; Inan, H.; Kesiraju, S.; Le, P.; Lim, S.J.; Smith, A.M.; Zangar, R.C. An Automated Microfluidic Assay for Photonic Crystal Enhanced Detection and Analysis of an Antiviral Antibody Cancer Biomarker in Serum. IEEE Sens. J. 2017, 18, 1464–1473. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Li, Z.; Li, L.; Chen, Z.G.; Sun, S.-Y.; Chen, P.; Shin, D.M.; Khuri, F.R.; Fu, H. Distinct Growth Factor-Induced Dynamic Mass Redistribution (DMR) Profiles for Monitoring Oncogenic Signaling Pathways in Various Cancer Cells. J. Recept. Signal Transduct. 2009, 29, 182–194. [Google Scholar] [CrossRef]
- Huang, C.-S.; George, S.; Lu, M.; Chaudhery, V.; Tan, R.; Zangar, R.C.; Cunningham, B.T. Application of Photonic Crystal Enhanced Fluorescence to Cancer Biomarker Microarrays. Anal. Chem. 2011, 83, 1425–1430. [Google Scholar] [CrossRef] [PubMed]
- George, S.; Chaudhery, V.; Lu, M.; Takagi, M.; Amro, N.; Pokhriyal, A.; Tan, Y.; Ferreira, P.; Cunningham, B.T. Sensitive Detection of Protein and miRNA Cancer Biomarkers Using Silicon-Based Photonic Crystals and a Resonance Coupling Laser Scanning Platform. Lab. Chip 2013, 13, 4053–4064. [Google Scholar] [CrossRef]
- Karawdeniya, B.I.; Damry, A.M.; Murugappan, K.; Manjunath, S.; Bandara, Y.M.N.D.Y.; Jackson, C.J.; Tricoli, A.; Neshev, D. Surface Functionalization and Texturing of Optical Metasurfaces for Sensing Applications. Chem. Rev. 2022, 122, 14990–15030. [Google Scholar] [CrossRef]
- Hosseini, S.; Ibrahim, F.; Djordjevic, I.; Koole, L.H. Recent Advances in Surface Functionalization Techniques on Polymethacrylate Materials for Optical Biosensor Applications. Analyst 2014, 139, 2933–2943. [Google Scholar] [CrossRef]
- Kaja, S.; Hilgenberg, J.D.; Collins, J.L.; Shah, A.A.; Wawro, D.; Zimmerman, S.; Magnusson, R.; Koulen, P. Detection of Novel Biomarkers for Ovarian Cancer with an Optical Nanotechnology Detection System Enabling Label-Free Diagnostics. J. Biomed. Opt. 2012, 17, 081412. [Google Scholar] [CrossRef]
- Cruceriu, D.; Baldasici, O.; Balacescu, O.; Berindan-Neagoe, I. The Dual Role of Tumor Necrosis Factor-Alpha (TNF-α) in Breast Cancer: Molecular Insights and Therapeutic Approaches. Cell. Oncol. 2020, 43, 1–18. [Google Scholar] [CrossRef]
- Knüpfer, H.; Preiß, R. Significance of Interleukin-6 (IL-6) in Breast Cancer (Review). Breast Cancer Res. Treat. 2007, 102, 129–135. [Google Scholar] [CrossRef]
- Chen, W.; Long, K.D.; Lu, M.; Chaudhery, V.; Yu, H.; Choi, J.S.; Polans, J.; Zhuo, Y.; Harley, B.A.; Cunningham, B.T. Photonic Crystal Enhanced Microscopy for Imaging of Live Cell Adhesion. Analyst 2013, 138, 5886–5894. [Google Scholar] [CrossRef] [PubMed]
- Poulikakos, L.V.; Lawrence, M.; Barton, D.R.; Jeffrey, S.S.; Dionne, J.A. Guided-Mode-Resonant Dielectric Metasurfaces for Colorimetric Imaging of Material Anisotropy in Fibrous Biological Tissue. ACS Photonics 2020, 7, 3216–3227. [Google Scholar] [CrossRef]
- Fang, Y.; Ferrie, A.M.; Fontaine, N.H.; Yuen, P.K. Characteristics of Dynamic Mass Redistribution of Epidermal Growth Factor Receptor Signaling in Living Cells Measured with Label-Free Optical Biosensors. Anal. Chem. 2005, 77, 5720–5725. [Google Scholar] [CrossRef]
- Zaytseva, N.; Lynn, J.G.; Wu, Q.; Mudaliar, D.J.; Sun, H.; Kuang, P.Q.; Fang, Y. Resonant Waveguide Grating Biosensor-Enabled Label-Free and Fluorescence Detection of Cell Adhesion. Sens. Actuators B Chem. 2013, 188, 1064–1072. [Google Scholar] [CrossRef]
- Chan, L.L.; Gosangari, S.L.; Watkin, K.L.; Cunningham, B.T. A Label-Free Photonic Crystal Biosensor Imaging Method for Detection of Cancer Cell Cytotoxicity and Proliferation. Apoptosis 2007, 12, 1061–1068. [Google Scholar] [CrossRef]
- Magnusson, R.; Wawro, D.; Zimmerman, S.; Ding, Y. Resonant Photonic Biosensors with Polarization-Based Multiparametric Discrimination in Each Channel. Sensors 2011, 11, 1476–1488. [Google Scholar] [CrossRef]
- Xiao, G.; Zhu, Q.; Shen, Y.; Li, K.; Liu, M.; Zhuang, Q.; Jin, C. A Tunable Submicro-Optofluidic Polymer Filter Based on Guided-Mode Resonance. Nanoscale 2015, 7, 3429–3434. [Google Scholar] [CrossRef]
- Tseng, Y.-T.; Chiu, Y.-C.; Pham, V.-D.; Wu, W.-H.; Le-Vu, T.T.; Wang, C.-H.; Kuo, S.-W.; Chan, M.W.Y.; Lin, C.-H.; Li, S.-C.; et al. Ultrasensitive Upconversion Nanoparticle Immunoassay for Human Serum Cardiac Troponin I Detection Achieved with Resonant Waveguide Grating. ACS Sens. 2024, 9, 455–463. [Google Scholar] [CrossRef]
- Wilson, D.H.; Rissin, D.M.; Kan, C.W.; Fournier, D.R.; Piech, T.; Campbell, T.G.; Meyer, R.E.; Fishburn, M.W.; Cabrera, C.; Patel, P.P.; et al. The Simoa HD-1 Analyzer: A Novel Fully Automated Digital Immunoassay Analyzer with Single-Molecule Sensitivity and Multiplexing. SLAS Technol. 2016, 21, 533–547. [Google Scholar] [CrossRef]
- Empana, J.-P.; Lerner, I.; Perier, M.-C.; Guibout, C.; Jabre, P.; Bailly, K.; Andrieu, M.; Climie, R.; van Sloten, T.; Vedie, B.; et al. Ultrasensitive Troponin I and Incident Cardiovascular Disease. Arterioscler. Thromb. Vasc. Biol. 2022, 42, 1471–1481. [Google Scholar] [CrossRef]
- Huang, L.; Jin, R.; Zhou, C.; Li, G.; Xu, L.; Overvig, A.; Deng, F.; Chen, X.; Lu, W.; Alù, A.; et al. Ultrahigh-Q Guided Mode Resonances in an All-Dielectric Metasurface. Nat. Commun. 2023, 14, 3433. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-H.; Chang, C.-Y.; Chen, Y.-R.; Huang, C.-S. Blood Biomarker Detection Using Integrated Microfluidics with Optical Label-Free Biosensor. Sensors 2024, 24, 6756. [Google Scholar] [CrossRef] [PubMed]
- Triggs, G.J.; Fischer, M.; Stellinga, D.; Scullion, M.G.; Evans, G.J.O.; Krauss, T.F. Spatial Resolution and Refractive Index Contrast of Resonant Photonic Crystal Surfaces for Biosensing. IEEE Photonics J. 2015, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Kwak, J.Y.; Seong, T.-Y.; Hwang, G.W.; Kim, W.M.; Kim, I.; Lee, K.-S. Optimization of Tunable Guided-Mode Resonance Filter Based on Refractive Index Modulation of Graphene. Sci. Rep. 2019, 9, 19951. [Google Scholar] [CrossRef]
- Fallah, H.; Hakim, L.; Boonruang, S.; Mohammed, W.S.; Hsu, S.H. Polymer-Based Guided-Mode Resonance Sensors: From Optical Theories to Sensing Applications. ACS Appl. Polym. Mater. 2023, 5, 9700–9713. [Google Scholar] [CrossRef]
- Alam, M.Z.; Sun, X.; Mojahedi, M.; Aitchison, J.S. Augmented Low Index Waveguide for Confining Light in Low Index Media. Laser Photonics Rev. 2017, 11, 1500224. [Google Scholar] [CrossRef]
- Cu, D.T.; Wu, H.W.; Chen, H.P.; Su, L.C.; Kuo, C.C. Exploiting Thin-Film Properties and Guided-Mode Resonance for Designing Ultrahigh-Figure-of-Merit Refractive Index Sensors. Sensors 2024, 24, 960. [Google Scholar] [CrossRef]
- Ura, S.; Tsuji, R.; Inoue, J.; Kintaka, K. Multidimensional Angle Sensing Method Using Guided-Mode Resonance. Opt. Rev. 2021, 28, 650–654. [Google Scholar] [CrossRef]
- Kenaan, A.; Li, K.; Barth, I.; Johnson, S.; Song, J.; Krauss, T.F. Guided Mode Resonance Sensor for the Parallel Detection of Multiple Protein Biomarkers in Human Urine with High Sensitivity. Biosens. Bioelectron. 2020, 153, 112047. [Google Scholar] [CrossRef]
- Lue, J.-H.; Ding, T.-J.; Yang, T.-H.; Huang, H.-C.; Hsu, C.-L.; Liu, J.-T.; Chen, W.-Y.; Chang, J.-Y. Real-Time Monitoring DNA Hybridization by Guided Resonant Mode Biosensor. In Proceedings of the 2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Kaohsiung, Taiwan, 20–23 February 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1208–1211. [Google Scholar] [CrossRef]
- Drayton, A.; Li, K.; Simmons, M.; Reardon, C.; Krauss, T.F. Performance Limitations of Resonant Refractive Index Sensors with Low-Cost Components. Opt. Express 2020, 28, 32239–32248. [Google Scholar] [CrossRef]
- Juan-Colás, J.; Hitchcock, I.S.; Coles, M.; Johnson, S.; Krauss, T.F. Quantifying Single-Cell Secretion in Real Time Using Resonant Hyperspectral Imaging. Proc. Natl. Acad. Sci. USA 2018, 115, 13204–13209. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.; Kondoh, J. Tuning and Sensitivity Enhancement of Surface Plasmon Resonance Sensor. Sens. Actuators B Chem. 2007, 122, 381–388. [Google Scholar] [CrossRef]
- Özdemir, Ş.K.; Turhan-Sayan, G. Temperature Effects on Surface Plasmon Resonance: Design Considerations for an Optical Temperature Sensor. J. Light. Technol. 2003, 21, 805. [Google Scholar] [CrossRef]
- Tamayo, J.; Kosaka, P.M.; Ruz, J.J.; Paulo, Á.S.; Calleja, M. Biosensors Based on Nanomechanical Systems. Chem. Soc. Rev. 2013, 42, 1287–1311. [Google Scholar] [CrossRef]
- Li, K.; Suliali, N.J.; Sahoo, P.K.; Silver, C.D.; Davrandi, M.; Wright, K.; Reardon, C.; Johnson, S.D.; Krauss, T.F. Noise Tolerant Photonic Bowtie Grating Environmental Sensor. ACS Sens. 2024, 9, 1857–1865. [Google Scholar] [CrossRef]
- Kus-Liśkiewicz, M.; Fickers, P.; Ben Tahar, I. Biocompatibility and Cytotoxicity of Gold Nanoparticles: Recent Advances in Methodologies and Regulations. Int. J. Mol. Sci. 2021, 22, 10952. [Google Scholar] [CrossRef]
- Greulich, C.; Kittler, S.; Epple, M.; Muhr, G.; Köller, M. Studies on the Biocompatibility and the Interaction of Silver Nanoparticles with Human Mesenchymal Stem Cells (hMSCs). Langenbecks Arch. Surg. 2009, 394, 495–502. [Google Scholar] [CrossRef]
- Lichtenberg, J.Y.; Ling, Y.; Kim, S. Non-Specific Adsorption Reduction Methods in Biosensing. Sensors 2019, 19, 2488. [Google Scholar] [CrossRef]
- Salaluk, S.; Jiang, S.; Viyanit, E.; Rohwerder, M.; Landfester, K.; Crespy, D. Design of Nanostructured Protective Coatings with a Sensing Function. ACS Appl. Mater. Interfaces 2021, 13, 53046–53054. [Google Scholar] [CrossRef]
- Gambhir, M.; Gupta, S. Advanced Optimization Algorithms for Grating Based Sensors: A Comparative Analysis. Optik 2018, 164, 567–574. [Google Scholar] [CrossRef]
- Moghaddas, S.A.J.; Shahabadi, M.; Mohammad-Taheri, M. Guided Mode Resonance Sensor With Enhanced Surface Sensitivity Using Coupled Cross-Stacked Gratings. IEEE Sens. J. 2014, 14, 1216–1222. [Google Scholar] [CrossRef]
- AlAameri, H.M.H.; Shokooh-Saremi, M. Guided-Mode Resonance Sensors with High Sensitivity and Asymmetric Structures. J. Nanophotonics 2024, 18, 016005. [Google Scholar] [CrossRef]
- Finco, G.; Bideskan, M.Z.; Vertchenko, L.; Beliaev, L.Y.; Malureanu, R.; Lindvold, L.R.; Takayama, O.; Andersen, P.E.; Lavrinenko, A.V. Guided-Mode Resonance on Pedestal and Half-Buried High-Contrast Gratings for Biosensing Applications. Nanophotonics 2021, 10, 4289–4296. [Google Scholar] [CrossRef]
- Antoniou, M.; Tsounidi, D.; Petrou, P.S.; Beltsios, K.G.; Kakabakos, S.E. Functionalization of Silicon Dioxide and Silicon Nitride Surfaces with Aminosilanes for Optical Biosensing Applications. Med. Devices Sens. 2020, 3, e10072. [Google Scholar] [CrossRef]
- Hsiung, C.-T.; Huang, C.-S. Refractive Index Sensor Based on Gradient Waveguide Thickness Guided-Mode Resonance Filter. IEEE Sens. Lett. 2018, 2, 1–4. [Google Scholar] [CrossRef]
- Abdulhalim, I. Optimized Guided Mode Resonant Structure as Thermooptic Sensor and Liquid Crystal Tunable Filter. Chin. Opt. Lett. 2009, 7, 667–670. [Google Scholar] [CrossRef]
- Pandey, V.; Pal, S. Investigating the Performance of Metal-Assisted Guided Mode Resonance Based Structures for Biosensing Applications. IEEE Sens. J. 2019, 19, 4412–4418. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J. Optical Biosensors: An Exhaustive and Comprehensive Review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef]
- Chen, W.; Li, Z.; Cheng, W.; Wu, T.; Li, J.; Li, X.; Liu, L.; Bai, H.; Ding, S.; Li, X.; et al. Surface Plasmon Resonance Biosensor for Exosome Detection Based on Reformative Tyramine Signal Amplification Activated by Molecular Aptamer Beacon. J. Nanobiotechnol. 2021, 19, 450. [Google Scholar] [CrossRef]
- Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef]
- Khodaie, A.; Heidarzadeh, H.; Harzand, F.V. Development of an Advanced Multimode Refractive Index Plasmonic Optical Sensor Utilizing Split Ring Resonators for Brain Cancer Cell Detection. Sci. Rep. 2025, 15, 433. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Z.; Lin, Q.; Wei, Y.; Wang, J.; Li, Y.; Yang, R.; Yuan, Q. Highly Sensitive Detection of Bladder Cancer-Related miRNA in Urine Using Time-Gated Luminescent Biochip. ACS Sens. 2019, 4, 2124–2130. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Lozano, O.; García-Aparicio, P.; Raduly, L.-Z.; Estévez, M.C.; Berindan-Neagoe, I.; Ferracin, M.; Lechuga, L.M. One-Step and Real-Time Detection of microRNA-21 in Human Samples for Lung Cancer Biosensing Diagnosis. Anal. Chem. 2022, 94, 14659–14665. [Google Scholar] [CrossRef]
- Kammer, M.N.; Kussrow, A.K.; Webster, R.L.; Chen, H.; Hoeksema, M.; Christenson, R.; Massion, P.P.; Bornhop, D.J. Compensated Interferometry Measures of CYFRA 21–1 Improve Diagnosis of Lung Cancer. ACS Comb. Sci. 2019, 21, 465–472. [Google Scholar] [CrossRef]
- Krauss, T.F.; Miller, L.; Wälti, C.; Johnson, S. Photonic and Electrochemical Biosensors for Near-Patient Tests–a Critical Comparison. Optica 2024, 11, 1408–1418. [Google Scholar] [CrossRef]
- Shen, R.; He, R.; Chen, L.; Guo, J. Inverse Design of Hybrid Metal-Dielectric Guided Mode Resonance Optical Filters with a Deep Learning Neural Network and Fano Function Matching. Opt. Mater. Express 2022, 12, 3600–3613. [Google Scholar] [CrossRef]
- Araki, K.; Zhang, R.Z. Resonant-Mode Metasurface Thermal Super Mirror by Deep Learning-Assisted Optimization Algorithms. J. Quant. Spectrosc. Radiat. Transf. 2024, 329, 109195. [Google Scholar] [CrossRef]
Biomarker | Source | Type | Antibody | LOD | Sensitivity | Cancer/Disease Type |
---|---|---|---|---|---|---|
Calreticulin [52] | Blood | Protein | Monoclonal IgG antibody | 1.3 pg/mL to 1.9 ng/mL | Picomolar (pM) | Ovarian |
Ryanodine receptor 3 [52] | Blood | Protein | Monoclonal IgG antibody | NA | Picomolar (pM) | Breast |
β-actin (ACTB) [53] | Blood | Protein | ACTB antibody | NA | 112.4 nm RIU−1 | Pan-cancer |
Thrombin [54] | Blood | Protein/ enzyme | Anti-thrombin antibody | 0.19 μΜ | 0.04 nm/μM | Thrombosis |
TNF-α [55] | Blood | Protein | Anti TNF-α | 1.6 ng/mL | -- | Oral squamous |
Albumin [56] | Blood | Protein | Anti-albumin | 2.92 μg/mL | −91.7 nm/RIU | Kidney |
Creatinine [56] | Urine | Chemical compound | Anti-creatinine antibody | 12.05 μg/mL | −91.7 nm/RIU | Kidney |
S. aureus [39] | Infected tissues, blood | Bacteria | Anti-S. aureus antibody | NA | ~10−5 RIU | Skin infections |
DNP (dinitrophenol) [57] | Various tissues (exposed individuals) | Molecule | Anti-DNP antibody | 7.5 × 10−8 g/mL | 0.999 RIU−1 (reflection mode) | Weight loss |
Neuropeptide Y (NPY) [51] | Brain, nervous tissue | Peptide | Anti-NPY antibody | ~0.1 pM | 107 nm/RIU (TM mode) 338 nm/RIU (TE mode) | Cardiovascular |
C-reactive protein [58] | Blood | Protein | Anti-CRP antibody | 1.95 × 10−8 g/mL | 0.181 RIU−1 | Inflammation |
Antigen immunoglobulin (IgG) [59] | Blood, serum | Antigen | Anti-IgG antibody | 1 ng/mL (6.7 pM) | 0.79 RIU−1 | Infection |
EGFR [60,61] | Tissue/blood | Protein | AF231 | 850 (pg/mL) (on resonance) | 141 fluorescent intensity/(pg/mL) | Lung |
HBEGF [61] | Tissue/blood | Protein | AF292 | 6.9 pg/mL (on resonance) | 141 fluorescent intensity/(pg/mL) | Ovarian |
HER-2 [61] | Tissue/blood | Protein | MAB1129 | 44 (pg/mL) (on resonance) | 141 fluorescent intensity/(pg/mL) | Breast |
MMP1 [61] | Serum/ plasma | Protein | AF901 | 110 (pg/mL) (on resonance) | 141 fluorescent intensity/(pg/mL) | Breast |
MMP9 [61] | Tissue/blood | Protein | AF911 | 19 (pg/mL) (on resonance) | 141 fluorescent intensity/(pg/mL) | Ovarian |
uPAR [61] | Tissue/blood/ serum | Protein | MAB 807 | 2000 (pg/mL) (on resonance) | 141 fluorescent intensity/(pg/mL) | Breast |
VEGF [61] | Tissue/blood/ serum | Protein | AF-293 | 61 (pg/mL) (on resonance) | 141 fluorescent intensity/(pg/mL) | Ovarian |
miR-21 [62] | Blood/urine/ saliva | RNA | 5′-TCA-ACA-TCA-GTC-TGA-TAA-GCT-A-3′ | 0.6–1.0 pM | -- | Breast |
E7 protein [59] | Tissue | Protein | Anti TNF-α | 1 ng/mL | 0.79 RIU−1 | Cervical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahoo, P.K.; Bhat, A.A.; Singh, M.; Li, K. Recent Advances of Guided Mode Resonant Sensors Applied to Cancer Biomarker Detection. Photonics 2025, 12, 424. https://doi.org/10.3390/photonics12050424
Sahoo PK, Bhat AA, Singh M, Li K. Recent Advances of Guided Mode Resonant Sensors Applied to Cancer Biomarker Detection. Photonics. 2025; 12(5):424. https://doi.org/10.3390/photonics12050424
Chicago/Turabian StyleSahoo, Pankaj K., Arshad Ahmad Bhat, Mandeep Singh, and Kezheng Li. 2025. "Recent Advances of Guided Mode Resonant Sensors Applied to Cancer Biomarker Detection" Photonics 12, no. 5: 424. https://doi.org/10.3390/photonics12050424
APA StyleSahoo, P. K., Bhat, A. A., Singh, M., & Li, K. (2025). Recent Advances of Guided Mode Resonant Sensors Applied to Cancer Biomarker Detection. Photonics, 12(5), 424. https://doi.org/10.3390/photonics12050424