Sub-Nanosecond, Room-Temperature, Mid-IR Fe:ZnSe Gain-Switched Laser: Experimental Characterization and Modeling
Abstract
1. Introduction
2. Modeling of Gain-Switched Fe:ZnSe Room-Temperature Laser
3. Experimental Set-Up
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR | Antireflection |
CPA | Chirped-pulse amplification |
DM | Dichroic mirror |
EO | Electro-optical |
FWHM | Full width at half maximum |
GS | Gain-switched |
HR | High reflector |
HT | High transmitter |
KTA | Potassium titanyl arsenate |
LGS | Lanthanum gallium silicate |
Mid-IR | Middle infrared |
OC | Output coupler |
OPCPA | Optical parametric chirped-pulse amplification |
OPO | Optical parametric oscillator |
RT | Room temperature |
SHG | Second-harmonic generation |
YAG | Yttrium aluminum garnet |
YSGG | Yttrium scandium gallium garnet |
ZBLAN | Zirconium barium lanthanum aluminum sodium fluoride |
ZGP | Zinc germanium phosphide |
References
- Schliesser, A.; Picqué, N.; Hänsch, T.W. Mid-Infrared Frequency Combs. Nat. Photon. 2012, 6, 440–449. [Google Scholar] [CrossRef]
- Maidment, L.; Schunemann, P.G.; Reid, D.T. Molecular Fingerprint-Region Spectroscopy from 5 to 12 µm Using an Orientation-Patterned Gallium Phosphide Optical Parametric Oscillator. Opt. Lett. 2016, 41, 4261–4264. [Google Scholar] [CrossRef] [PubMed]
- Walsh, B.M.; Lee, H.R.; Barnes, N.P. Mid Infrared Lasers for Remote Sensing Applications. J. Lumin. 2016, 169, 400–405. [Google Scholar] [CrossRef]
- Fjodorow, P.; Frolov, M.P.; Korostelin, Y.V.; Kozlovsky, V.I.; Schulz, C.; Leonov, S.O.; Skasyrsky, Y.K. Room-Temperature Fe:ZnSe Laser Tunable in the Spectral Range of 3.7–5.3 µm Applied for Intracavity Absorption Spectroscopy of CO2 Isotopes, CO and N2O. Opt. Express 2021, 29, 12033. [Google Scholar] [CrossRef]
- Haglund, R.F.; Dygert, N.L.; Johnson, S.L.; Schriver, K.E.; Park, H.K. Processing of Polymer and Organic Materials by Tunable, Ultrafast Mid-Infrared Lasers. In Pacific International Conference on Applications of Lasers and Optics; Laser Institute of America: Orlando, FL, USA, 2008; pp. 658–663. [Google Scholar] [CrossRef]
- Amini-Nik, S.; Kraemer, D.; Cowan, M.L.; Gunaratne, K.; Nadesan, P.; Alman, B.A.; Miller, R.J.D. Ultrafast Mid-IR Laser Scalpel: Protein Signals of the Fundamental Limits to Minimally Invasive Surgery. PLoS ONE 2010, 5, e13053. [Google Scholar] [CrossRef]
- Yue, W.; Zhang, Y.; Shi, L.; Chen, T.; Chen, J.; Wu, B.; Zhang, S.; Shu, R.; Shen, Y. Porcine Skin Ablation Using Mid-Infrared Picosecond Pulse Burst. Results Opt. 2022, 9, 100309. [Google Scholar] [CrossRef]
- Hinton, G.D. Infrared Countermeasures Test and Evaluation. ITEA J. 2006, 13–14. [Google Scholar]
- Keller, J. Northrop Grumman to Upgrade Obsolescence in Infrared Countermeasures Sensors for Aircraft Missile Warning. Mil. Aerosp. Electron. 2022. [Google Scholar]
- Elu, U.; Steinle, T.; Sánchez, D.; Maidment, L.; Zawilski, K.; Schunemann, P.; Zeitner, U.D.; Simon-Boisson, C.; Biegert, J. Table-Top High-Energy 7 µm OPCPA and 260 mJ Ho:YLF Pump Laser. Opt. Lett. 2019, 44, 3194. [Google Scholar] [CrossRef]
- Fjodorow, P.; Frolov, M.P.; Leonov, S.O.; Denker, B.I.; Galagan, B.I.; Sverchkov, S.E.; Koltashev, V.V.; Plotnichenko, V.G.; Sukhanov, M.V.; Velmuzhov, A.P. Mid-Infrared Laser Performance of Ce3+—Doped Selenide Glass. Opt. Express 2021, 29, 27674. [Google Scholar] [CrossRef]
- Tovey, D.; Pigeon, J.; Tochitsky, S.; Louwrens, G.; Ben-Zvi, I.; Martyshkin, D.; Fedorov, V.; Karki, K.; Mirov, S.; Joshi, C. Lasing in 15 Atm CO2 Cell Optically Pumped by a Fe:ZnSe Laser. Opt. Express 2021, 29, 31455. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.D.; Martyshkin, D.V.; Camata, R.P.; Fedorov, V.V.; Mirov, S.B. Crystal Field Engineering of Transition Metal Doped II-VI Ternary and Quaternary Semiconductors for Mid-IR Tunable Laser Applications. Opt. Mater. Express 2015, 5, 2036. [Google Scholar] [CrossRef]
- Frolov, M.P.; Korostelin, Y.V.; Kozlovsky, V.I.; Leonov, S.O.; Skasyrsky, Y.K. Tunable in the Range of 4.5–6.8 µm Room Temperature Single-Crystal Fe:CdTe Laser Pumped by Fe:ZnSe Laser. Opt. Express 2020, 28, 17449. [Google Scholar] [CrossRef]
- Mirov, S.B.; Moskalev, I.S.; Vasilyev, S.; Smolski, V.; Fedorov, V.V.; Martyshkin, D.; Peppers, J.; Mirov, M.; Dergachev, A.; Gapontsev, V. Frontiers of Mid-IR Lasers Based on Transition Metal Doped Chalcogenides. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–29. [Google Scholar] [CrossRef]
- Dormidonov, A.E.; Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kononov, I.G.; Kurashkin, S.V.; Podlesnykh, S.V.; Savin, D.V. Suppression of Transverse Parasitic Oscillation in Fe:ZnSe and Fe:ZnS Lasers Based on Polycrystalline Active Elements: A Review. Phys. Wave Phen. 2020, 28, 222–230. [Google Scholar] [CrossRef]
- Pushkin, A.; Potemkin, F. Refining the Performance of Mid-IR CPA Laser Systems Based on Fe-Doped Chalcogenides for Nonlinear Photonics. Photonics 2023, 10, 1375. [Google Scholar] [CrossRef]
- Fedorov, V.; Martyshkin, D.; Karki, K.; Mirov, S. Q-Switched and Gain-Switched Fe:ZnSe Lasers Tunable over 3.60–5.15 µm. Opt. Express 2019, 27, 13934. [Google Scholar] [CrossRef]
- Mirov, S.; Fedorov, V.; Martyshkin, D.; Moskalev, I.; Mirov, M.; Vasilyev, S. High Average Power Fe:ZnSe and Cr:ZnSe Mid-IR Solid State Lasers. In Advanced Solid State Lasers; OSA: Berlin, Germany, 2015; p. AW4A.1. [Google Scholar] [CrossRef]
- Pushkin, A.V.; Migal, E.A.; Uehara, H.; Goya, K.; Tokita, S.; Frolov, M.P.; Korostelin, Y.V.; Kozlovsky, V.I.; Skasyrsky, Y.K.; Potemkin, F.V. Compact, Highly Efficient, 21-W Continuous-Wave Mid-Infrared Fe:ZnSe Coherent Source, Pumped by an Er:ZBLAN Fiber Laser. Opt. Lett. 2018, 43, 5941. [Google Scholar] [CrossRef]
- Liang, X.; Zhou, S.; Liu, Z.; Bao, B. Modeling and Analysis of Actively Q-Switched Fe: ZnSe Laser Pumped by a 2.8 µm Fiber Laser. Optoelectron. Lett. 2023, 19, 513–518. [Google Scholar] [CrossRef]
- Fedorov, V.V.; Mirov, S.B.; Gallian, A.; Badikov, D.V.; Frolov, M.P.; Korostelin, Y.V.; Kozlovsky, V.I.; Landman, A.I.; Podmar’kov, Y.P.; Akimov, V.A.; et al. 3.77–5.05 µm Tunable Solid-State Lasers Based on Fe2+—Doped ZnSe Crystals Operating at Low and Room Temperatures. IEEE J. Quantum Electron. 2006, 42, 907–917. [Google Scholar] [CrossRef]
- Kozlovsky, V.I.; Korostelin, Y.V.; Podmar’kov, Y.P.; Skasyrsky, Y.K.; Frolov, M.P. Middle Infrared Fe2+:ZnS, Fe2+:ZnSe and Cr2+:CdSe Lasers: New Results. J. Phys. Conf. Ser. 2016, 740, 012006. [Google Scholar] [CrossRef]
- Marra, Z.A.; Wu, Y.; Zhou, F.; Chang, Z. Cryogenically Cooled Fe:ZnSe-Based Chirped Pulse Amplifier at 4.07 µm. Opt. Express 2023, 31, 13447. [Google Scholar] [CrossRef] [PubMed]
- Pushkin, A.V.; Migal, E.A.; Tokita, S.; Korostelin, Y.V.; Potemkin, F.V. Femtosecond Graphene Mode-Locked Fe:ZnSe Laser at 4.4 µm. Opt. Lett. 2020, 45, 738. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, R.; Zhou, S.; Ren, H.; Zhang, S.; Wei, X.; Shang, J.; Wang, W.; Leng, M.; Dai, W.; et al. High Average Power (105 W) Fe:ZnSe Laser Pumped by Radiation of Laser Diode Side-Pumped Er:YAG Lasers. Opt. Lett. 2024, 49, 3476. [Google Scholar] [CrossRef]
- Kernal, J.; Fedorov, V.V.; Gallian, A.; Mirov, S.B.; Badikov, V.V. 3.9–4.8 µm Gain-Switched Lasing of Fe:ZnSe at Room Temperature. Opt. Express 2005, 13, 10608. [Google Scholar] [CrossRef]
- Leonov, S.; Frolov, M.; Korostelin, Y.; Skasyrsky, Y.; Kozlovsky, V. Gain-Switched Fe:ZnSe Laser Pumped by a Coupled-Cavity Q-Switched Er:ZrF4 Fiber Laser. Opt. Lett. 2023, 48, 2957. [Google Scholar] [CrossRef]
- Dormidonov, A.E.; Firsov, K.N.; Gavrishchuk, E.M.; Ikonnikov, V.B.; Kazantsev, S.Y.; Kononov, I.G.; Kotereva, T.V.; Savin, D.V.; Timofeeva, N.A. High-Efficiency Room-Temperature ZnSe:Fe2+ Laser with a High Pulsed Radiation Energy. Appl. Phys. B 2016, 122, 211. [Google Scholar] [CrossRef]
- Martyshkin, D.; Karki, K.; Fedorov, V.; Mirov, S. Room Temperature, Nanosecond, 60 mJ/Pulse Fe:ZnSe Master Oscillator Power Amplifier System Operating at 3.8–5.0 µm. Opt. Express 2021, 29, 2387. [Google Scholar] [CrossRef]
- Antonov, V.A.; Bukin, V.V.; Dolmatov, T.V.; Firsov, K.N.; Gavrishchuk, E.M.; Kononov, I.G.; Obraztsov, P.A.; Podlesnykh, S.V.; Ponarina, M.V.; Sirotkin, A.A.; et al. Single-Nanosecond-Pulse Lasing in Heavily Doped Fe:ZnSe. IEEE Photonics J. 2021, 13, 1500807. [Google Scholar] [CrossRef]
- Phillips, K.C.; Gandhi, H.H.; Mazur, E.; Sundaram, S.K. Ultrafast Laser Processing of Materials: A Review. Adv. Opt. Photon. 2015, 7, 684. [Google Scholar] [CrossRef]
- Malinauskas, M.; Žukauskas, A.; Hasegawa, S.; Hayasaki, Y.; Mizeikis, V.; Buividas, R.; Juodkazis, S. Ultrafast Laser Processing of Materials: From Science to Industry. Light Sci. Appl. 2016, 5, e16133. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Fedorov, V.V. Modeling of Sub-Nanosecond Fe:ZnSe Mid-IR Gain-Switched Laser Operating at Room Temperature. In Solid State Lasers XXXIII: Technology and Devices; Clarkson, W.A., Shori, R.K., Eds.; SPIE: San Francisco, CA, USA, 2024; p. 4. [Google Scholar] [CrossRef]
- Low, W.; Weger, M. Paramagnetic Resonance and Optical Spectra of Divalent Iron in Cubic Fields. I. Theory. Phys. Rev. 1960, 120, 2277. [Google Scholar] [CrossRef]
- Martyshkin, D.; Fedorov, V.; Hamlin, S.J.; Mirov, S. 350 mJ Electro-Optically Q-Switched 2.79 µm Cr:Er:YSGG MOPA. Opt. Express 2023, 31, 18525. [Google Scholar] [CrossRef] [PubMed]
- Lan, H.; Liang, F.; Lin, Z.; Yu, H.; Zhang, H.; Wang, J. Langasite Family Midinfrared Nonlinear Optical Oxide Materials: Structure, Property, and Applications. Int. J. Opt. 2017, 2017, 2980274. [Google Scholar] [CrossRef]
- Ghimire, S.; Danilin, D.; Martyshkin, D.; Fedorov, V.; Mirov, S. Room Temperature Sub-Nanosecond Fe:ZnSe Gain-Switched Laser Characterization and Modeling. In Solid State Lasers XXXIV: Technology and Devices; Clarkson, W.A., Shori, R.K., Eds.; SPIE: San Francisco, CA, USA, 2025; p. 55. [Google Scholar] [CrossRef]
- Dmitriev, V.G.; Gurzadjan, G.G.; Nikogosjan, D.N. Handbook of Nonlinear Optical Crystals, 3rd ed.; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-08472-0. [Google Scholar]
Input Physical Parameter | Symbol | Value | Units |
---|---|---|---|
Crystal length | 0.1–0.6 | cm | |
Cavity length | 0.3–4.0 | cm | |
Output coupler reflectivity | 0.1–0.9 | unitless | |
Total Fe2+ concentration | 1.1 × 1019 | cm−3 | |
Lower manifold population density | variable | cm−3 | |
Upper manifold population density | variable | cm−3 | |
Pump wavelength | 2.98 (2.79) | µm | |
Laser oscillation wavelength | 4.50 (4.65) | µm | |
Absorption cross-section at | 0.96 (0.82) | ×10−18 cm2 | |
Absorption cross-section at | 0.100 (0.058) | ×10−18 cm2 | |
Emission cross-section at | 1.08 (0.94) | ×10−18 cm2 | |
Non-saturable passive losses at | 0.04 | cm−1 | |
Non-saturable passive losses at | 0.21 | cm−1 | |
Pump photon flux | variable | [photon/(s·cm2)] | |
Laser oscillation flux propagating to the right | variable | [photon/(s·cm2)] | |
Laser oscillation flux propagating to the left | variable | [photon/(s·cm2)] | |
Pump pulse duration at FWHM | 9 (52) | ns | |
Upper-level lifetime | 380 | ns | |
Refractive index at | 2.44 | unitless | |
Refractive index at | 2.43 | unitless | |
Spontaneous emission to laser oscillation mode coupling coefficient (oscillation seed) | 10−7–10−11 | unitless | |
Round trip oscillation diffractive losses | 0.92 | unitless |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghimire, S.; Danilin, D.; Martyshkin, D.; Fedorov, V.; Mirov, S. Sub-Nanosecond, Room-Temperature, Mid-IR Fe:ZnSe Gain-Switched Laser: Experimental Characterization and Modeling. Photonics 2025, 12, 254. https://doi.org/10.3390/photonics12030254
Ghimire S, Danilin D, Martyshkin D, Fedorov V, Mirov S. Sub-Nanosecond, Room-Temperature, Mid-IR Fe:ZnSe Gain-Switched Laser: Experimental Characterization and Modeling. Photonics. 2025; 12(3):254. https://doi.org/10.3390/photonics12030254
Chicago/Turabian StyleGhimire, Saugat, Daniil Danilin, Dmitry Martyshkin, Vladimir Fedorov, and Sergey Mirov. 2025. "Sub-Nanosecond, Room-Temperature, Mid-IR Fe:ZnSe Gain-Switched Laser: Experimental Characterization and Modeling" Photonics 12, no. 3: 254. https://doi.org/10.3390/photonics12030254
APA StyleGhimire, S., Danilin, D., Martyshkin, D., Fedorov, V., & Mirov, S. (2025). Sub-Nanosecond, Room-Temperature, Mid-IR Fe:ZnSe Gain-Switched Laser: Experimental Characterization and Modeling. Photonics, 12(3), 254. https://doi.org/10.3390/photonics12030254