Adaptive Varifocal Lenses Based on Dielectric Elastomer Actuator
Abstract
:1. Introduction
2. Adaptive Varifocal Lenses Based on DEA
2.1. Principle of DEA
2.2. Adaptive Varifocal Liquid Lens Based on DEA
2.3. Adaptive Varifocal Soft Solid Lens Based on DEA
2.4. Adaptive Varifocal Metalens Based on DEA
2.5. Adaptive Varifocal Fresnel Zone Plate Lens Based on DEA
2.6. Adaptive Varifocal Microlens Array Based on DEA
2.7. Adaptive Varifocal Alvarez Lenses Base on DEA
3. Prospects and Challenges
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuiper, S.; Hendriks, B.H. Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 2004, 85, 1128–1130. [Google Scholar] [CrossRef]
- Saurei, L.; Mathieu, G.; Berge, B. Design of an autofocus lens for VGA ¼-inch CCD and CMOS sensors. In Optical Design and Engineering; SPIE: Bellingham, WA, USA, 2004. [Google Scholar]
- Hendriks, B.H.W.; Kuiper, S.; van As, M.A.J.; Renders, C.A.; Tukker, T.W. Variable liquid lenses for electronic products. In ICO20: Optical Design and Fabrication; SPIE: Bellingham, WA, USA, 2006. [Google Scholar]
- Akram, M.N.; Asghar, M.H. Step-zoom dual-field-of-view infrared telescope. Appl. Opt. 2003, 42, 2312–2316. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zheng, D.; Zhou, X.; Zhang, X. Combination of mechanical athermalization with manual in IR zoom telescope. In Infrared Technology XVII; SPIE: Bellingham, WA, USA, 1991. [Google Scholar]
- Johnson, R.B.; Hadaway, J.B.; Burleson, T.A.; Watts, B.; Park, E.D. All-reflective four-element zoom telescope: Design and analysis. In International Lens Design Conference; SPIE: Bellingham, WA, USA, 1991. [Google Scholar]
- Tsai, F.S.; Johnson, D.; Francis, C.S.; Cho, S.H.; Qiao, W.; Arianpour, A.; Mintz, Y.; Horgan, S.; Talamini, M.; Lo, Y.-H. Fluidic lens laparoscopic zoom camera for minimally invasive surgery. J. Biomed. Opt. 2010, 15, 030504. [Google Scholar] [CrossRef]
- Volpi, D.; Tullis, I.D.C.; Barber, P.R.; Augustyniak, E.M.; Smart, S.C.; Vallis, K.A.; Vojnovic, B. Electrically tunable fluidic lens imaging system for laparoscopic fluorescence-guided surgery. Biomed. Opt. Express 2017, 8, 3232–3247. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Chau, F.S.; Zhou, G. Ultra-compact optical zoom endoscope using solid tunable lenses. Opt. Express 2017, 25, 20675–20688. [Google Scholar] [CrossRef]
- Ouzounov, D.G.; Rivera, D.R.; Webb, W.W.; Bentley, J.; Xu, C. Miniature varifocal objective lens for endomicroscopy. Opt. Lett. 2013, 38, 3103–3106. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, H. Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications. Opt. Express 2013, 21, 9428–9436. [Google Scholar] [CrossRef]
- Chen, H.; Chen, M.; Lin, Y. Electrically tunable ophthalmic lenses for myopia and presbyopia using liquid crystals. Mol. Cryst. Liq. Cryst. 2014, 596, 88–96. [Google Scholar] [CrossRef]
- Chen, B.; Wang, M.R.; Liu, Z.; Yang, J.J. Dynamic spectral imaging with spectral zooming capability. Opt. Lett. 2007, 32, 1518–1520. [Google Scholar] [CrossRef]
- Greisukh, G.I.; Ezhov, E.G.; Sidyakina, Z.A.; Stepanov, S.A. Design of plastic diffractive–refractive compact zoom lenses for visible–near-IR spectrum. Appl. Opt. 2013, 52, 5843–5850. [Google Scholar] [CrossRef]
- Kajima, M.; Minoshima, K. Optical zooming interferometer for subnanometer positioning using an optical frequency comb. Appl. Opt. 2010, 49, 5844–5850. [Google Scholar] [CrossRef]
- Kajima, M.; Matsumoto, H. Picometer positioning system based on a zooming interferometer using a femtosecond optical comb. Opt. Express 2008, 16, 1497–1506. [Google Scholar] [CrossRef] [PubMed]
- Bigwood, C.; Wood, A. Two-element lenses for military applications. Opt. Eng. 2011, 50, 121705. [Google Scholar] [CrossRef]
- Santiago, F.; Bagwell, B.E.; Pinon, V.; Krishna, S. Adaptive polymer lens for rapid zoom shortwave infrared imaging applications. Opt. Eng. 2014, 53, 125101. [Google Scholar] [CrossRef]
- Cheng, Y.; Cao, J.; Tang, X.; Hao, Q. Optical zoom imaging systems using adaptive liquid lenses. Bioinspir. Biomim. 2021, 16, 041002. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; He, Z.; Wu, S.T. Reflective polarization volume lens with small f-number and large diffraction angle. Adv. Opt. Mater. 2020, 8, 2000170. [Google Scholar] [CrossRef]
- Lin, H.; Lin, Y. An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes. Opt. Express 2012, 20, 2045–2052. [Google Scholar] [CrossRef]
- Chu, F.; Tian, L.-L.; Li, R.; Gu, X.-Q.; Zhou, X.-Y.; Wang, D.; Wang, Q.-H. Adaptive nematic liquid crystal lens array with resistive layer. Liq. Cryst. 2020, 47, 563–571. [Google Scholar] [CrossRef]
- Ma, L.-L.; Li, C.-Y.; Pan, J.-T.; Ji, Y.-E.; Jiang, C.; Zheng, R.; Wang, Z.-Y.; Wang, Y.; Li, B.-X.; Lu, Y.-Q. Self-assembled liquid crystal architectures for soft matter photonics. Light Sci. Appl. 2022, 11, 270. [Google Scholar] [CrossRef]
- Zheng, R.; Wei, Y.; Zhang, Z.; Wang, Z.; Ma, L.; Wang, Y.; Huang, L.; Lu, Y. Stimuli-responsive active materials for dynamic control of light field. Responsive Mater. 2023, 1, e20230017. [Google Scholar] [CrossRef]
- Wu, J.; Wu, S.; Cao, H.; Chen, Q.; Lu, Y.; Hu, W. Electrically Tunable Microlens Array Enabled by Polymer-Stabilized Smectic Hierarchical Architectures. Adv. Opt. Mater. 2022, 10, 2201015. [Google Scholar] [CrossRef]
- Zheng, R.; Ma, L.; Feng, W.; Pan, J.; Wang, Z.; Chen, Z.; Zhang, Y.; Li, C.; Chen, P.; Bisoyi, H.K.; et al. Autonomous Self-Sustained Liquid Crystal Actuators Enabling Active Photonic Applications. Adv. Funct. Mater. 2023, 33, 2301142. [Google Scholar] [CrossRef]
- Ma, L.-L.; Wu, S.-B.; Hu, W.; Liu, C.; Chen, P.; Qian, H.; Wang, Y.; Chi, L.; Lu, Y.-Q. Self-Assembled Asymmetric Microlenses for Four-Dimensional Visual Imaging. ACS Nano 2019, 13, 13709–13715. [Google Scholar] [CrossRef] [PubMed]
- Cooper, E.J.; Reynolds, M.; Raistrick, T.; Berrow, S.R.; Jull, E.I.L.; Reshetnyak, V.; Mistry, D.; Gleeson, H.F. Controlling the Optical Properties of Transparent Auxetic Liquid Crystal Elastomers. Macromolecules 2024, 57, 2030–2038. [Google Scholar] [CrossRef]
- Rešetič, A. Shape programming of liquid crystal elastomers. Commun. Chem. 2024, 7, 56. [Google Scholar] [CrossRef]
- Palto, S.P.; Geivandov, A.R.; Kasyanova, I.V.; Simdyankin, I.V.; Artemov, V.V.; Gorkunov, M.V. Liquid crystal microlenses based on binary surface alignment controlled by focused ion beam treatment. Opt. Lett. 2021, 46, 3376–3379. [Google Scholar] [CrossRef]
- Chen, Q.; Li, T.; Li, Z.; Lu, C.; Zhang, X. Dielectrophoresis-actuated liquid lenses with dual air/liquid interfaces tuned from biconcave to biconvex. Lab Chip 2018, 18, 3849–3854. [Google Scholar] [CrossRef]
- Chen, Q.; Tong, X.; Zhu, Y.; Tsoi, C.C.; Jia, Y.; Li, Z.; Zhang, X. Aberration-free aspherical in-plane tunable liquid lenses by regulating local curvatures. Lab Chip 2020, 20, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, B.H.W.; Kuiper, S.; VAN As, M.A.J.; Renders, C.A.; Tukker, T.W. Electrowetting-based variable-focus lens for miniature systems. Opt. Rev. 2005, 12, 255–259. [Google Scholar] [CrossRef]
- Murade, C.U.; Oh, J.M.; Ende, D.v.D.; Mugele, F. Electrowetting driven optical switch and tunable aperture. Opt. Express 2011, 19, 15525–15531. [Google Scholar] [CrossRef]
- Hasan, N.; Banerjee, A.; Kim, H.; Mastrangelo, C.H. Tunable-focus lens for adaptive eyeglasses. Opt. Express 2017, 25, 1221–1233. [Google Scholar] [CrossRef]
- Wei, K.; Zeng, H.; Zhao, Y. Insect–Human Hybrid Eye (IHHE): An adaptive optofluidic lens combining the structural characteristics of insect and human eyes. Lab Chip 2014, 14, 3594–3602. [Google Scholar] [CrossRef]
- Berge, B.; Peseux, J. Variable focal lens controlled by an external voltage: An application of electrowetting. Eur. Phys. J. E 2000, 3, 159–163. [Google Scholar] [CrossRef]
- Ren, H.; Wu, S. Adaptive Lenses Based on Soft Electroactive Materials. Appl. Sci. 2018, 8, 1085. [Google Scholar] [CrossRef]
- Wei, K.; Zhao, Y. A three-dimensional deformable liquid lens array for directional and wide angle laparoscopic imaging. In Proceedings of the 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 20–24 January 2013. [Google Scholar]
- Wang, L.; Oku, H.; Ishikawa, M. Variable-focus lens with 30 mm optical aperture based on liquid–membrane–liquid structure. Appl. Phys. Lett. 2013, 102, 131111. [Google Scholar] [CrossRef]
- Huang, H.; Wei, K.; Zhao, Y. Variable focus smartphone based microscope using an elastomer liquid lens. In Proceedings of the 2016 IEEE 29th International conference on micro electro mechanical systems (MEMS), Shanghai, China, 24–28 January 2016. [Google Scholar]
- Ren, H.; Wu, S. Variable-focus liquid lens. Opt. Express 2007, 15, 5931–5936. [Google Scholar] [CrossRef]
- Ehrick, J.D.; Stokes, S.; Bachas-Daunert, S.; Moschou, E.A.; Deo, S.K.; Bachas, L.G.; Daunert, S. Chemically Tunable Lensing of Stimuli-Responsive Hydrogel Microdomes. Adv. Mater. 2007, 19, 4024–4027. [Google Scholar] [CrossRef]
- Dong, L.; Agarwal, A.K.; Beebe, D.J.; Jiang, H. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 2006, 442, 551–554. [Google Scholar] [CrossRef]
- Osada, Y.; Okuzaki, H.; Hori, H. A polymer gel with electrically driven motility. Nature 1992, 355, 242–244. [Google Scholar] [CrossRef]
- Takada, K.; Tanaka, N.; Tatsuma, T. A redox actuator based on reversible formation of bond between poly(acrylic acid) gel and Cu2+ ion. J. Electroanal. Chem. 2005, 585, 120–127. [Google Scholar] [CrossRef]
- Tanaka, T.; Nishio, I.; Sun, S.-T.; Ueno-Nishio, S. Collapse of Gels in an Electric Field. Science 1982, 218, 467–469. [Google Scholar] [CrossRef]
- Lee, Y.; Jang, B.; Song, H.; Kim, S.; Kwon, Y.W.; Kang, H.S.; Kim, M.S.; Park, I.; Kim, T.S.; Jang, J.; et al. A seamless auxetic substrate with a negative Poisson’s ratio of −1. Nat. Commun. 2024, 15, 7146. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Takasaki, M.; Hirai, T. Actuation mechanism of plasticized PVC by electric field. Sens. Actuators A Phys. 2010, 157, 307–312. [Google Scholar] [CrossRef]
- Ali, M.; Ueki, T.; Tsurumi, D.; Hirai, T. Influence of plasticizer content on the transition of electromechanical behavior of PVC gel actuator. Langmuir 2011, 27, 7902–7908. [Google Scholar] [CrossRef]
- Carpi, F.; Frediani, G.; Turco, S.; De Rossi, D. Bioinspired Tunable Lens with Muscle-Like Electroactive Elastomers. Adv. Funct. Mater. 2011, 21, 4152–4158. [Google Scholar] [CrossRef]
- Shian, S.; Diebold, R.M.; Clarke, D.R. High-Speed, Compact, Adaptive Lenses Using in-Line Transparent Dielectric Elastomer Actuator Membranes; SPIE: Bellingham, WA, USA, 2013. [Google Scholar]
- Hirai, T.; Ogiwara, T.; Fujii, K.; Ueki, T.; Kinoshita, K.; Takasaki, M. Electrically Active Artificial Pupil Showing Amoeba-Like Pseudopodial Deformation. Adv. Mater. 2009, 21, 2886–2888. [Google Scholar] [CrossRef]
- Hajiesmaili, E.; Clarke, D.R. Dielectric elastomer actuators. J. Appl. Phys. 2021, 129, 151102. [Google Scholar] [CrossRef]
- Ghilardi, M.; Boys, H.; Török, P.; Busfield, J.J.C.; Carpi, F. Smart Lenses with Electrically Tuneable Astigmatism. Sci. Rep. 2019, 9, 16127. [Google Scholar] [CrossRef]
- Keong, G.-K.; La, T.-G.; Shiau, L.-L.; Tan, A.W.Y. Challenges of Using Dielectric Elastomer Actuators to Tune Liquid Lens; SPIE: Bellingham, WA, USA, 2014. [Google Scholar]
- Carpi, F.; Frediani, G.; De Rossi, D. Bioinspired Tunable Lens Driven by Electroactive Polymer Artificial Muscles; Prescott, T.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 74–82. [Google Scholar]
- Zhang, W.; Zappe, H.; Seifert, A. Polyacrylate membranes for tunable liquid-filled microlenses. Opt. Eng. 2013, 52, 046601. [Google Scholar] [CrossRef]
- Maffli, L.; Rosset, S.; Ghilardi, M.; Carpi, F.; Shea, H. Ultrafast All-Polymer Electrically Tunable Silicone Lenses. Adv. Funct. Mater. 2015, 25, 1656–1665. [Google Scholar] [CrossRef]
- Brochu, P.; Pei, Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 2010, 31, 10–36. [Google Scholar] [CrossRef]
- Carpi, F.; Bauer, S.; De Rossi, D. Stretching dielectric elastomer performance. Science 2010, 330, 1759–1761. [Google Scholar] [CrossRef]
- Carpi, F.; De Rossi, D.; Kornbluh, R.; Pelrine, R.E.; Sommer-Larsen, P. Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Liang, D.; Lin, Z.; Huang, C.; Shih, W. Tunable lens driven by dielectric elastomer actuator with ionic electrodes. Micro Nano Lett. 2014, 9, 869–873. [Google Scholar] [CrossRef]
- Shian, S.; Diebold, R.M.; Clarke, D.R. Tunable lenses using transparent dielectric elastomer actuators. Opt. Express 2013, 21, 8669–8676. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, C.; Cao, J.; Bao, C.; Yang, A.; Hao, Q. Tunable lens using dielectric elastomer sandwiched by transparent conductive liquid. Opt. Lett. 2021, 46, 4430–4433. [Google Scholar] [CrossRef]
- Shian, S.; Diebold, R.M.; McNamara, A.; Clarke, D.R. Highly compliant transparent electrodes. Appl. Phys. Lett. 2012, 101, 61101. [Google Scholar] [CrossRef]
- Hao, Q.; Chen, C.; Cao, J.; Cheng, Y. Response Time of Liquid Lens Actuated by Dielectric Elastomer Under Different Input Voltage Functions; SPIE: Bellingham, WA, USA, 2021. [Google Scholar]
- Markert, C.D.; Guo, X.; Skardal, A.; Wang, Z.; Bharadwaj, S.; Zhang, Y.; Bonin, K.; Guthold, M. Characterizing the micro-scale elastic modulus of hydrogels for use in regenerative medicine. J. Mech. Behav. Biomed. Mater. 2013, 27, 115–127. [Google Scholar] [CrossRef]
- Chen, B.; Bai, Y.; Xiang, F.; Sun, J.; Chen, Y.M.; Wang, H.; Zhou, J.; Suo, Z. Stretchable and transparent hydrogels as soft conductors for dielectric elastomer actuators. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 1055–1060. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Wen, H.; Xia, Z.; Zhang, Z. Biomimetic human eyes in adaptive lenses with conductive gels. J. Mech. Behav. Biomed. Mater. 2023, 139, 105689. [Google Scholar] [CrossRef]
- Zhang, H.; Xia, Z.; Zhang, Z. Focus-tunable imaging analyses of the liquid lens based on dielectric elastomer actuator. Bull. Mater. Sci. 2021, 44, 148. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, Z.; Chen, C.; Cao, J.; Bao, C.; Ning, Y.; Hao, Q. Varifocal liquid lens driven by a conical dielectric elastomer actuator. Appl. Opt. 2022, 61, 4633–4637. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Liu, L.; Xu, S.; Liu, Y.; Leng, J.; Cai, S. A Biomimetic Soft Lens Controlled by Electrooculographic Signal. Adv. Funct. Mater. 2019, 29, 1903762. [Google Scholar] [CrossRef]
- Jin, B.; Lee, J.-H.; Zhou, Z.; Zhang, G.; Lee, G.-B.; Ren, H.; Nah, C. Liquid lens driven by elastomer actuator. Opt. Eng. 2016, 55, 017107. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, Y. Smartphone based focus-free macroscopy using an adaptive droplet lens. In Solid-State Sensors, Actuators and Microsystems Workshop Hilton Head Island; Transducer Research Foundation: San Diego, CA, USA, 2018. [Google Scholar]
- Hao, Q.; Li, Z.; Chen, C.; Cao, J.; Cheng, Y. Adaptive Liquid Lens Actuated by Dielectric Elastomer with Transparent Conductive Droplet; SPIE: Bellingham, WA, USA, 2021. [Google Scholar]
- Jin, B.; Lee, J.-H.; Zhou, Z.; Zhang, G.; Lee, G.-B.; Ren, H.; Nah, C. Adaptive liquid lens driven by elastomer actuator. Opt. Eng. 2016, 55, 017107. [Google Scholar] [CrossRef]
- Chen, L.; Ghilardi, M.; Busfield, J.J.C.; Carpi, F. Electrically Tunable Lenses: A Review. Front. Robot AI 2021, 8, 678046. [Google Scholar] [CrossRef]
- Wei, K.; Domicone, N.W.; Zhao, Y. A tunable liquid lens driven by a concentric annular electroactive actuator. In Proceedings of the 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, USA, 26–30 January 2014. [Google Scholar]
- Wei, K.; Domicone, N.W.; Zhao, Y. Electroactive liquid lens driven by an annular membrane. Opt. Lett. 2014, 39, 1318–1321. [Google Scholar] [CrossRef]
- Rasti, P.; Hous, H.; Schlaak, H.F.; Kiefer, R.; Anbarjafari, G. Dielectric elastomer stack actuator-based autofocus fluid lens. Appl Opt. 2015, 54, 9976–9980. [Google Scholar] [CrossRef]
- Ren, L.; Lee, R.H.; Park, H.R.; Ren, H.; Nah, C.; Yoo, I.S. A Liquid Lens Driven by Bubble Actuator. J. Microelectromechanical Syst. 2013, 22, 1222–1228. [Google Scholar] [CrossRef]
- Rasti, P.; Kesküla, A.; Haus, H.; Schlaak, H.F.; Anbarjafari, G.; Aabloo, A.; Kiefer, R. A Passive Autofocus System by Using Standard Deviation of the Image on a Liquid Lens; SPIE: Bellingham, WA, USA, 2015. [Google Scholar]
- Rasti, P.; Kiefer, R.; Anbarjafari, G. Autofocus Liquid Lens by Using Sharpness Measurement. In Proceedings of the 2015 23nd Signal Processing and Communications Applications Conference (SIU), Malatya, Turkey, 16–19 May 2015. [Google Scholar]
- Jiang, L.; Wang, Y.; Wang, X.; Ning, F.; Wen, S.; Zhou, Y.; Chen, S.; Betts, A.; Jerrams, S.; Zhou, F.-L. Electrohydrodynamic printing of a dielectric elastomer actuator and its application in tunable lenses. Composites. Part A Appl. Sci. Manuf. 2021, 147, 106461. [Google Scholar] [CrossRef]
- Liashenko, I.; Rosell-Llompart, J.; Cabot, A. Ultrafast 3D printing with submicrometer features using electrostatic jet deflection. Nat. Commun. 2020, 11, 753. [Google Scholar] [CrossRef]
- Onses, M.S.; Sutanto, E.; Ferreira, P.M.; Alleyne, A.G.; Rogers, J.A. Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small 2015, 11, 4237–4266. [Google Scholar] [CrossRef]
- Zhong, H.; Xue, Q.; Li, J.; He, Y.; Xie, Y.; Yang, C. Stretchable Transparent Polyelectrolyte Elastomers for All-Solid Tunable Lenses of Excellent Stability Based on Electro–Mechano–Optical Coupling. Adv. Mater. Technol. 2023, 8, 2200947. [Google Scholar] [CrossRef]
- Yun, S.; Park, S.; Nam, S.; Park, B.; Park, S.K.; Mun, S.; Lim, J.M.; Kyung, K.-U. An electro-active polymer based lens module for dynamically varying focal system. Appl. Phys. Lett. 2016, 109, 141908. [Google Scholar] [CrossRef]
- Pieroni, M.; Lagomarsini, C.; De Rossi, D.; Carpi, F. Electrically tunable soft solid lens inspired by reptile and bird accommodation. Bioinspir. Biomim. 2016, 11, 065003. [Google Scholar] [CrossRef]
- Kim, B.-C.; Chung, J.; Lee, Y.; Nam, J.-D.; Moon, H.; Choi, H.R.; Koo, J.C. Biomimetic Small Scale Variable Focal Length Lens Unit Using Synthetic Elastomer Actuators; SPIE: Bellingham, WA, USA, 2011. [Google Scholar]
- Kim, B.-C.; Lee, Y.; Nam, J.-D.; Moon, H.; Choi, H.R.; Koo, J.C. Smart Material Actuators for Micro Optical Zoom Lens Driving Systems. IEEE Trans. Magn. 2011, 47, 1999–2004. [Google Scholar] [CrossRef]
- Son, S.-I.; Pugal, D.; Hwang, T.; Choi, H.R.; Koo, J.C.; Lee, Y.; Kim, K.; Nam, J.-D. Electromechanically driven variable-focus lens based on transparent dielectric elastomer. Appl. Opt. 2012, 51, 2987–2996. [Google Scholar] [CrossRef]
- Rosset, S.; Shea, H.R. Small, fast, and tough: Shrinking down integrated elastomer transducers. Appl. Phys. Rev. 2016, 3, 031105. [Google Scholar] [CrossRef]
- Park, B.J.; Park, S.; Choi, M.; Park, S.K.; Yun, S.; Shin, E.; Yoon, J.W. Monolithic focus-tunable lens technology enabled by disk-type dielectric-elastomer actuators. Sci. Rep. 2020, 10, 16937. [Google Scholar] [CrossRef]
- Nam, S.; Yun, S.; Yoon, J.W.; Park, S.; Park, S.K.; Mun, S.; Park, B.; Kyung, K.-U. A Robust Soft Lens for Tunable Camera Application Using Dielectric Elastomer Actuators. Soft Robot 2018, 5, 777–782. [Google Scholar] [CrossRef]
- Shrestha, M.; La, T.; Lau, G.K. Inkjet Printed Stretchable Electrodes for Tunable Focus Lens; Nanyang Technological University: Singapore, 2016. [Google Scholar]
- Liu, S.; Qiu, Y.; Yu, W. Self-Contained Focus-Tunable Lenses Based on Transparent and Conductive Gels. Macromol. Mater. Eng. 2020, 305, 2000393. [Google Scholar] [CrossRef]
- Jin, B.; Ren, H. Position-movable lens driven by dielectric elastomer actuator. Opt. Eng. 2016, 55, 075101. [Google Scholar] [CrossRef]
- Yun, S.; Park, S.; Park, B.; Nam, S.; Park, S.K.; Kyung, K.-U. A thin film active-lens with translational control for dynamically programmable optical zoom. Appl. Phys. Lett. 2015, 107, 081907. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef]
- Genevet, P.; Capasso, F.; Aieta, F.; Khorasaninejad, M.; Devlin, R. Recent advances in planar optics: From plasmonic to dielectric metasurfaces. Optica 2017, 4, 139–152. [Google Scholar] [CrossRef]
- She, A.; Zhang, S.; Shian, S.; Clarke, D.R.; Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 2018, 4, eaap9957. [Google Scholar] [CrossRef]
- Park, S.; Park, B.; Nam, S.; Yun, S.; Park, S.K.; Mun, S.; Lim, J.M.; Ryu, Y.; Song, S.H.; Kyung, K.U. Electrically tunable binary phase Fresnel lens based on a dielectric elastomer actuator. Opt. Express 2017, 25, 23801–23808. [Google Scholar] [CrossRef]
- Tan, N.Y.J.; Zhang, X.; Neo, D.W.K.; Huang, R.; Liu, K.; Kumar, A.S. A review of recent advances in fabrication of optical Fresnel lenses. J. Manuf. Process. 2021, 71, 113–133. [Google Scholar] [CrossRef]
- Yuan, W.; Li, L.-H.; Lee, W.-B.; Chan, C.-Y. Fabrication of Microlens Array and Its Application: A Review. Chin. J. Mech. Eng. 2018, 31, 16. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, Y.; Yuan, R.; Jiang, Z.; Xu, J.; Zhao, Y.; Wang, X.; Li, X.; Xing, Y.; Wang, Q. Tunable Liquid Lenses: Emerging Technologies and Future Perspectives. Laser Photonics Rev. 2023, 17, 2300274. [Google Scholar] [CrossRef]
- Niklaus, M.; Rosset, S.; Shea, H. Array of Lenses with Individually Tunable Focal-Length Based on Transparent Ion-Implanted EAPs; SPIE: Bellingham, WA, USA, 2010. [Google Scholar]
- Wang, L.; Hayakawa, T.; Ishikawa, M. Dielectric-elastomer-based fabrication method for varifocal microlens array. Opt. Express 2017, 25, 31708–31717. [Google Scholar] [CrossRef]
- Lohmann, A.W. Improvements relating to lenses and to variable optical lens systems formed of such lenses. Br. Pat. 1965, 998, 29. [Google Scholar]
- Alvarez, L.W. Two-Element Wariable-Power Spherical Lens. 2017. Available online: https://www.semanticscholar.org/paper/TWO-ELEMENT-WARIABLE-POWER-SPHERICAL-LENS-Alvarez/62365fdd78a5a215f361b2e84d9de707cdf34533 (accessed on 26 February 2025).
- Wang, L.-Y.; Li, B.-C.; Sheng, B.; Xu, B.-L.; Huang, Y.-S.; Ni, Z.-J.; Zhang, D.-W. Optimized multielement accommodative intraocular lens with a four-freeform-surface Alvarez lens and a separate aspheric lens. Appl. Opt. 2019, 58, 7609–7614. [Google Scholar] [CrossRef]
- Chen, C.; Hao, Q.; Liu, L.; Cao, J.; Zhang, Y.; Cheng, Y. 10× continuous optical zoom imaging using Alvarez lenses actuated by dielectric elastomers. Opt. Express 2024, 32, 1246–1256. [Google Scholar] [CrossRef]
- Yin, L.-J.; Zhao, Y.; Zhu, J.; Yang, M.; Zhao, H.; Pei, J.-Y.; Zhong, S.-L.; Dang, Z.-M. Soft, tough, and fast polyacrylate dielectric elastomer for non-magnetic motor. Nat. Commun. 2021, 12, 4517. [Google Scholar] [CrossRef]
- Sheima, Y.; von Szczepanski, J.; Danner, P.M.; Künniger, T.; Remhof, A.; Frauenrath, H.; Opris, D.M. Transient elastomers with high dielectric permittivity for actuators, sensors, and beyond. ACS Appl. Mater. Interfaces 2022, 14, 40257–40265. [Google Scholar] [CrossRef]
- Hao, Q.; Liu, L.; Cao, J.; Liu, M.; Ou, Y.; Cheng, Y. Thin wide range varifocal diffractive Alvarez lenses actuated by dielectric elastomers. Opt. Lasers Eng. 2024, 182, 108453. [Google Scholar] [CrossRef]
- Chen, C.; Hao, Q.; Cao, J.; Xu, Y.; Cheng, Y. Two-dimensional varifocal scanning imaging based on Alvarez and decentred lenses actuated by dielectric elastomer. Opt. Laser Technol. 2023, 167, 109805. [Google Scholar] [CrossRef]
- Chen, C.; Hao, Q.; Liu, L.; Cao, J.; Qiao, Z.; Cheng, Y. Continuous Optical Zoom Compound Eye Imaging Using Alvarez Lenses Actuated by Dielectric Elastomers. Biomimetics 2024, 9, 374. [Google Scholar] [CrossRef]
- Hao, Q.; Chen, C.; Cao, J.; Li, Z.; Cheng, Y. Ultra-wide varifocal imaging with selectable region of interest capacity using Alvarez lenses actuated by a dielectric elastomer. Photonics Res. 2022, 10, 1543. [Google Scholar] [CrossRef]
- Qi, O.; Qi, O.; Liu, M.; Ning, Y.; Cao, J.; Qun, H.; Cheng, Y. Design of a Compact Infrared Continuous Optical Zoom System Based on Alvarez Lenses. Laser Optoelectron. Prog. 2024, 61, 1022001. (In Chinese) [Google Scholar]
- Cheng, Y.; Chen, C.; Liu, L.; Cao, J.; Xu, Y.; Hao, Q. A Compact Two-Dimensional Varifocal Scanning Imaging Device Actuated by Artificial Muscle Material. Biomimetics 2023, 8, 120. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hao, Q.; Li, Z.; Xiong, J.; Zhang, Y.; Cheng, Y. Design and demonstration of DEA-based tunable planar liquid crystal Alvarez lenses. Opt. Laser Technol. 2025, 182, 112068. [Google Scholar] [CrossRef]
- Madsen, F.B.; Daugaard, A.E.; Hvilsted, S.; Skov, A.L. The current state of silicone-based dielectric elastomer transducers. Macromol. Rapid Commun. 2016, 37, 378–413. [Google Scholar] [CrossRef]
- Dünki, S.J.; Ko, Y.S.; Nüesch, F.A.; Opris, D.M. Self-repairable, high permittivity dielectric elastomers with large actuation strains at low electric fields. Adv. Funct. Mater. 2015, 25, 2467–2475. [Google Scholar] [CrossRef]
- Poulin, A.; Rosset, S.; Shea, H.R. Printing low-voltage dielectric elastomer actuators. Appl. Phys. Lett. 2015, 107, 244104. [Google Scholar] [CrossRef]
- Lotz, P.; Matysek, M.; Schlaak, H.F. Fabrication and Application of Miniaturized Dielectric Elastomer Stack Actuators. IEEE/ASME Trans. Mechatron. 2011, 16, 58–66. [Google Scholar] [CrossRef]
- Schlaak, H.F.; Jungmann, M.; Matysek, M.; Lotz, P. Novel multilayer electrostatic solid state actuators with elastic dielectric. In Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices (EAPAD); SPIE: Bellingham, WA, USA, 2005. [Google Scholar]
Year | Refs. | Focal Length Range | Response Time | Lens Diameter | Driving Voltage | Functional Principle | DEA Material | Compliant Electrode Material |
---|---|---|---|---|---|---|---|---|
2010 | [109] | 4 mm–8 mm | / | 2 mm | 0–1.7 kV | Changing surface curvature | PDMS | Gold ion |
2011 | [51] | 16.72 mm–22.73 mm | 60 ms | 7.6 mm | 0–3.5 kV | Changing surface curvature | VHB 4905 | Carbon conductive grease 846 |
2011 | [91] | 924.2 mm–958 mm | / | 28 mm | 0–3 kV | Changing surface curvature | NBR (Nitrile Butadiene Rubber) | Liquid carbon |
2012 | [93] | 12.5 cm–15.5 cm (Object distance) | / | 6.5 mm | 0–4.5 kV | Changing surface curvature | Silicone rubber from NuSil Technology (R-2652) | Poly(3,4-ethylenedioxythiophene) (PEDOT) |
2013 | [82] | −168 mm–−55 mm | 1 s | / | 0–8 kV | Changing surface curvature | Acrylate rubber | Carbon greases (MG Chemicals, Canada) |
2013 | [64] | 16 cm–770 cm (Object distance) | <1 s | / | 0–5 kV | Changing surface curvature | VHB 4910 | Single-walled carbon nanotube |
2013 | [52] | 33.5 mm–45.5 mm | 35 ms | / | 0–4.5 kV | Changing surface curvature | VHB 4905, VHB 4910 | Single-walled carbon nanotube |
2014 | [79] | 25.4 mm–105.2 mm | 660 ms | 5 mm | 0–1 kV | Changing surface curvature | PDMS | Carbon conductive grease 846; IPA |
2014 | [63] | 13.1 mm–16.1 mm | / | 4 mm | 0–900 V | Changing surface curvature | PDMS | Gold electrode; NaCl solution |
2014 | [56] | 15 cm–50 cm (Object distance) | / | 8 mm | 0–1.8 kV | Changing surface curvature | VHB 4910 | Graphite powder with oil immersion |
2015 | [59] | 120 mm–3000 mm (Object distance) | 175 us | 5 mm | 0–2.8 kV | Changing surface curvature | Silicone Nusil CF19-218; VHB4906 | Carbon black pearls 2000; Silicone LSR4305 |
2015 | [100] | 1.9 mm– 2.25 mm | <1 ms | 1 mm | 0–4 kV | Changing surface curvature | PDMS | silver nanowire |
2015 | [81] | 19 cm–44 cm (Object distance) | / | 4 mm | 50–750 V | Changing surface curvature | PDMS | Graphite powder |
2015 | [74] | 3 mm–5.4 mm | 540 ms | 1.63 mm– 1.85 mm | 0–2.6 kV | Changing surface curvature | Silicone rubber compound and peroxide curing agent | Carbon conductive grease (MG Chemicals, Canada) |
2015 | [74] | 400 μm–620 μm | 540 ms | 0.350 μm–0.376 mm | 0–2 kV | Changing surface curvature | Silicone rubber compound and peroxide curing agent | Carbon conductive grease (MG Chemicals, Canada) |
2016 | [90] | 16.6 mm–36.6 mm | / | 50 mm | 0–3.7 kV | Changing surface curvature | VHB 4910 | Carbon conductive grease 846 |
2016 | [97] | 2.5 cm–30 cm (Object distance) | / | / | 0–3 kV | Changing surface curvature | VHB 4905 | Silver thin film electrode |
2017 | [105] | 14.5 cm–20.0 cm | 23 ms (rise time) 93 ms (fall time) | / | 0–4 kV | Two-phase microstructure shrinking | PDMS | Silver nanowires (AgNWs) |
2017 | [110] | 950 mm–∞ | / | 30 mm | 0–5 kV | Changing surface curvature | VHB 4910 | / |
2018 | [96] | 14.3 mm–23.7 mm | / | 3 mm | 0–4.6 kV | Changing surface curvature | VHB 4905 | Carbon conductive grease |
2018 | [104] | 50 mm–65 mm | / | 6 mm | 0–3 kV | Generalized Snell’s law | VHB 4905 | Single-walled carbon nanotubes |
2018 | [75] | 10.76 mm–23.58 mm | 646 ms | / | 0–6 kV | Changing surface curvature | VHB 4910 | Carbon black nanoparticles |
2018 | [75] | 2.05 mm–4.38 mm | 646 ms | / | 0–6 kV | Changing surface curvature | VHB 4910 | Carbon black nanoparticles |
2020 | [95] | 4.32 mm–8.35 mm | 7 ms | 1.45 mm | 0–5 kV | Changing surface curvature | Dimethylsiloxane-co-methylvinylsiloxane; dimethylsiloxane-co-methylsiloxane | Silver nanowire |
2020 | [98] | 12.3 mm–22.1 mm | 80–153 ms | 11.1 mm | 1–5.5 kV | Changing surface curvature | VHB 4905 | Conductive PAM hydrogel |
2021 | [65] | 14.28 mm–21.6 mm | 60 ms (rise time) 185 ms (fall time) | 16 mm | 0–3.0 kV | Changing surface curvature | VHB 4905 | Glycerol and sodium chloride |
2021 | [76] | 3.04 mm–4.22 mm | / | 10 mm | 0–3 kV | Changing surface curvature | VHB 4905 | Glycerol and sodium chloride |
2022 | [72] | 9.50 mm–15.07 mm | 215 ms (rise time) 293 ms (fall time) | 9.4 mm | 0–5 kV | Changing surface curvature | VHB 4905 | Carbon conductive grease |
2022 | [88] | 10 cm–70 cm (Object distance) | 140 ms | 15 mm | 0–7 kV | Changing surface curvature | VHB 4910 | Poly(3-acrylamidopropyl) trimethylammonium chloride |
2022 | [120] | 5.94 mm–181 mm | 160 ms (rise time) 295 ms (fall time) | 6.0 mm | 0.2–5 kV | Phase plate movement | VHB 4905 | Carbon powder (BP 2000, Carbot) |
2023 | [118] | 5.2 mm–19.5 mm | 124 ms (rise time) 203 ms (fall time) | / | 0.2–4 kV | Phase plate movement | VHB 4905 | Carbon powder (BP 2000, Carbot) |
2024 | [119] | 6 mm–150 mm | 180 ms | / | 0–3.6 kV | Phase plate movement | VHB 4905 | Carbon powder (BP 2000, Carbot) |
2024 | [114] | 6.3 mm–12.0 mm | 150 ms (rise time) 210 ms (fall time) | / | 0–3.6 kV | Phase plate movement | VHB 4905 | Carbon powder (BP 2000, Carbot) |
2024 | [117] | 30 mm–300 mm | 134 ms (rise time) 206 ms (fall time) | 32 mm | 0–5 kV | Phase plate movement | VHB 4905 | Carbon powder (BP 2000, Carbot) |
2025 | [123] | 118 mm–1476 mm | 185 ms (rise time) 296 ms (fall time) | 30 mm | 0–3.6 kV | Phase plate movement | VHB 4905 | Carbon powder (BP 2000, Carbot) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Liu, L.; Xing, H.; Li, Z.; Cheng, Y. Adaptive Varifocal Lenses Based on Dielectric Elastomer Actuator. Photonics 2025, 12, 227. https://doi.org/10.3390/photonics12030227
Li S, Liu L, Xing H, Li Z, Cheng Y. Adaptive Varifocal Lenses Based on Dielectric Elastomer Actuator. Photonics. 2025; 12(3):227. https://doi.org/10.3390/photonics12030227
Chicago/Turabian StyleLi, Shibiao, Lin Liu, Haoyue Xing, Zhaohui Li, and Yang Cheng. 2025. "Adaptive Varifocal Lenses Based on Dielectric Elastomer Actuator" Photonics 12, no. 3: 227. https://doi.org/10.3390/photonics12030227
APA StyleLi, S., Liu, L., Xing, H., Li, Z., & Cheng, Y. (2025). Adaptive Varifocal Lenses Based on Dielectric Elastomer Actuator. Photonics, 12(3), 227. https://doi.org/10.3390/photonics12030227