Azimuthally Spliced Power-Exponential Phase Modulation for Focal Spot Shaping of Circular Airy Beams
Abstract
1. Introduction
2. Propagation Characteristics of the Modulated CAB in Free Space
2.1. Theoretical Background
2.2. Results and Discussions
3. Evolution of the Modulated CAB in Tight Focus and Its Trapping-Force Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Efremidis, N.K.; Chen, Z.; Segev, M.; Christodoulides, D.N. Airy beams and accelerating waves An overview of recent advances. Optica 2019, 6, 686–701. [Google Scholar] [CrossRef]
- Siviloglou, G.A.; Broky, J.; Dogariu, A.; Christodoulides, D.N. Observation of Accelerating Airy Beams. Phys. Rev. Lett. 2007, 99, 213901. [Google Scholar] [CrossRef]
- Polynkin, P.; Kolesik, M.; Moloney, J.V.; Siviloglou, G.A.; Christodoulides, D.N. Curved plasma channel generation using ultraintense Airy beams. Science 2009, 324, 229–232. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, Y.-X.; Chen, M.; Arita, Y.; Rosales-Guzmán, C. Optical trapping with structured light: A review. Adv. Photonics 2021, 3, 034001. [Google Scholar] [CrossRef]
- Jia, S.; Vaughan, J.C.; Zhuang, X. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function. Nat. Photonics 2014, 8, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Sohr, D.; Thomas, J.U.; Skupin, S. Shaping convex edges in borosilicate glass by single pass perforation with an Airy beam. Opt. Lett. 2021, 46, 2529–2532. [Google Scholar] [CrossRef]
- Papazoglou, D.G.; Efremidis, N.K.; Christodoulides, D.N.; Tzortzakis, S. Observation of abruptly autofocusing waves. Opt. Lett. 2011, 36, 1842–1844. [Google Scholar] [CrossRef]
- Panagiotopoulos, P.; Papazoglou, D.; Couairon, A.; Tzortzakis, S. Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets. Nat. Commun. 2013, 4, 2622. [Google Scholar] [CrossRef]
- Lu, W.; Sun, X.; Chen, H.; Liu, S.; Lin, Z. Abruptly autofocusing property and optical manipulation of circular Airy beams. Phys. Rev. A 2019, 99, 013817. [Google Scholar] [CrossRef]
- Zhang, P.; Prakash, J.; Zhang, Z.; Mills, M.S.; Efremidis, N.K.; Christodoulides, D.N.; Chen, Z. Trapping and guiding microparticles with morphing autofocusing Airy beams. Opt. Lett. 2011, 36, 2883–2885. [Google Scholar] [CrossRef]
- Moradi, H.; Jabbarpour, M.; Abdollahpour, D.; Hajizadeh, F. 3D optical trapping by a tightly focused circular airy beam. Opt. Lett. 2022, 47, 4115–4118. [Google Scholar] [CrossRef]
- Wang, J.; Hua, X.; Guo, C.; Liu, W.; Jia, S. Airy-beam tomographic microscopy. Optica 2020, 7, 790–793. [Google Scholar] [CrossRef]
- Ivaškevičiūtė-Povilauskienė, R.; Kizevičius, P.; Nacius, E.; Jokubauskis, D.; Ikamas, K.; Lisauskas, A.; Alexeeva, N.; Matulaitienė, I.; Jukna, V.; Orlov, S.; et al. Terahertz structured light: Nonparaxial Airy imaging using silicon diffractive optics. Light. Sci. Appl. 2022, 11, 326. [Google Scholar] [CrossRef]
- Wen, J.; Chen, L.; Yu, B.; Nieder, J.B.; Zhuang, S.; Zhang, D.; Lei, D. All-Dielectric Synthetic-Phase Metasurfaces Generating Practical Airy Beams. ACS Nano 2021, 15, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yuan, L. Separating radial and azimuthal polarizations of circular Airy vortex beam via uniaxial crystal. Opt. Express 2023, 31, 22507–22518. [Google Scholar] [CrossRef]
- Li, P.; Liu, S.; Peng, T.; Xie, G.; Gan, X.; Zhao, J. Spiral autofocusing Airy beams carrying power-exponent-phase vortices. Opt. Express 2014, 22, 7598–7606. [Google Scholar] [CrossRef]
- Wang, F.W.F.; Lou, C.L.C.; Liang, Y.L.Y. Propagation dynamics of ring Airy Gaussian beams with cosine modulated optical vortices. Chin. Opt. Lett. 2018, 16, 110502. [Google Scholar] [CrossRef]
- Brimis, A.; Makris, K.G.; Papazoglou, D.G. Tornado waves. Opt. Lett. 2020, 45, 280–283. [Google Scholar] [CrossRef]
- Chen, L.; Wang, L.-G. Experimental observation and manipulation of optical tornado waves. Opt. Lett. 2022, 47, 2109–2112. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Xu, D.; Mo, Z.; Cai, X.; Huang, H.; Zhang, Y.; Yang, H.; Huang, H.; Wu, Y.; Shui, L.; et al. Generation and control of tornado waves by means of ring swallowtail vortex beams. Opt. Express 2022, 30, 11331–11344. [Google Scholar] [CrossRef]
- Pan, J.; Wang, H.; Shen, Y.; Fu, X.; Liu, Q. Airy coherent vortices: 3D multilayer self-accelerating structured light. Appl. Phys. Lett. 2022, 121, 141102. [Google Scholar] [CrossRef]
- Liu, H.; Pu, H.; Zhang, J.; Jiao, Y.; Xu, R.; Yang, H.; Yuan, L. Investigating the propagation characteristics of modulated circular Airy vortex beam in free space via angular spectrum method. Opt. Commun. 2023, 529, 129087. [Google Scholar] [CrossRef]
- Lin, D.; Tao, S. Generation of auto-focusing vortex beam via segment vortex phase for imaging edge-enhancement. Phys. Scr. 2024, 99, 055517. [Google Scholar] [CrossRef]
- Liu, H.; Teng, C.; Yang, H.; Deng, H.; Xu, R.; Deng, S.; Chen, M.; Yuan, L. Proposed phase plate for superimposed orbital angular momentum state generation. Opt. Express 2018, 26, 14792–14799. [Google Scholar] [CrossRef]
- Liu, H.; Deng, S.; Deng, H.; Xu, R.; Yang, H.; Teng, C.; Zhang, L.; Chen, M.; Yuan, L. Spin-orbital coupling of quadratic-power-exponent-phase vortex beam propagating in a uniaxial crystal. Opt. Express 2019, 28, 216–225. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Pu, H.; Xu, J.; Xu, R.; Yuan, L. Controlling the Abrupt Autofocusing of Circular Airy Vortex Beam via Uniaxial Crystal. Photonics 2022, 9, 943. [Google Scholar] [CrossRef]
- Richards, B.; Wolf, E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A 1959, 253, 358–379. [Google Scholar]
- Aiello, A.; Banzer, P.; Neugebauer, M.; Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photonics 2015, 9, 789–795. [Google Scholar] [CrossRef]
- Harada, Y.; Asakura, T. Radiation forces on a dielectric sphere. Opt. Commun. 1996, 124, 529–541. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Guo, Y.; Zhao, M.; Ye, J.; Xu, R.; Yuan, L. Azimuthally Spliced Power-Exponential Phase Modulation for Focal Spot Shaping of Circular Airy Beams. Photonics 2025, 12, 135. https://doi.org/10.3390/photonics12020135
Liu H, Guo Y, Zhao M, Ye J, Xu R, Yuan L. Azimuthally Spliced Power-Exponential Phase Modulation for Focal Spot Shaping of Circular Airy Beams. Photonics. 2025; 12(2):135. https://doi.org/10.3390/photonics12020135
Chicago/Turabian StyleLiu, Houquan, Yaran Guo, Mantong Zhao, Jingfu Ye, Ronghui Xu, and Libo Yuan. 2025. "Azimuthally Spliced Power-Exponential Phase Modulation for Focal Spot Shaping of Circular Airy Beams" Photonics 12, no. 2: 135. https://doi.org/10.3390/photonics12020135
APA StyleLiu, H., Guo, Y., Zhao, M., Ye, J., Xu, R., & Yuan, L. (2025). Azimuthally Spliced Power-Exponential Phase Modulation for Focal Spot Shaping of Circular Airy Beams. Photonics, 12(2), 135. https://doi.org/10.3390/photonics12020135