Multiple Dissipative Solitons in an Erbium-Doped Fiber Laser Mode-Locked with Ethylene Glycol
Abstract
1. Introduction
2. Experimental Setup
3. Results and Discussions
3.1. Single Dissipative Soliton Operation
3.2. Dissipative Soliton Pairs Operation
3.3. Dissipative Soliton Triplets’ Emission
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Dudley, J.M.; Finot, C.; Richardson, D.J.; Millot, G. Self-similarity in ultrafast nonlinear optics. Nat. Phys. 2007, 3, 597–603. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y. Ultrafast lasers-reliable tools for advanced materials processing. Light Sci. Appl. 2014, 3, e149. [Google Scholar] [CrossRef]
- Peng, J.S.; Zhao, Z.H.; Boscolo, S.; Finot, C.; Sugavanam, S.; Churkin, D.V.; Zeng, H.P. Breather Molecular Complexes in a Passively Mode-Locked Fiber Laser. Laser Photonics Rev. 2021, 15, 2000132. [Google Scholar] [CrossRef]
- Salhi, M.; Leblond, H.; Sanchez, F. Theoretical study of the erbium-doped fiber laser passively mode-locked by nonlinear polarization rotation. Phys. Rev. A 2003, 67, 013802. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.C.; Wang, P. Harmonic Dissipative Soliton Resonance in an Er/Yb Co-Doped Fiber Laser Based On SESAM. J. Lightwave Technol. 2022, 40, 5958–5966. [Google Scholar] [CrossRef]
- Guo, H.Y.; Hou, L.; Wang, Y.G.; Sun, J.; Lin, Q.M.; Bai, Y.; Bai, J.T. Tunable Ytterbium-Doped Mode-Locked Fiber Laser Based on Single-Walled Carbon Nanotubes. J. Lightwave Technol. 2019, 37, 2370–2374. [Google Scholar] [CrossRef]
- Hua, K.; Wang, D.N. Coupling scheme for graphene saturable absorber in a linear cavity mode-locked fiber laser. Opt. Lett. 2021, 46, 4362–4365. [Google Scholar] [CrossRef]
- Xing, X.W.; Liu, Y.X.; Han, J.F.; Liu, W.J.; Wei, Z.Y. Preparation of High Damage Threshold Device Based on Bi2Se3 Film and Its Application in Fiber Lasers. ACS Photonics 2023, 10, 2264–2271. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Zhang, H.; Wu, Z.J.; Gu, Q.Q.; Wang, S.T.; Deng, G.L.; Zhou, S.H. The dispersion management of passively mode-locked all-fiber lasers based on the Co2+: ZnS-film. Opt. Laser Technol. 2022, 155, 108368. [Google Scholar] [CrossRef]
- Pawliszewska, M.; Ge, Y.; Li, Z.; Zhang, H.; Sotor, J. Fundamental and harmonic mode-locking at 2.1 μm with black phosphorus saturable absorber. Opt. Express 2017, 25, 16916–16921. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.N.; Ma, P.F.; Fu, S.G.; Shang, X.X.; Jiang, S.Z.; Wang, S.Y.; Li, D.W.; Zhang, H.N. Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations. Nanophotonics 2020, 9, 2783–2795. [Google Scholar] [CrossRef]
- Cafiso, S.D.D.; Ugolotti, E.; Schmidt, A.; Petrov, V.; Griebner, U.; Agnesi, A.; Cho, W.B.; Jung, B.H.; Rotermund, F.; Bae, S.; et al. Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber. Opt. Lett. 2013, 38, 1745–1747. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Yao, Y.; Yan, P.G.; Xu, K.; Liu, J.J.; Wang, S.G.; Li, Y. Dual-Wavelength Soliton Mode-Locked Fiber Laser with a WS2-Based Fiber Taper. IEEE Photon. Technol. Lett. 2016, 28, 323–326. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Zhan, L.; Wu, J.; Zou, Z.X.; Zhang, L.; Qian, K.; He, L.; Fang, X. Self-starting ultrafast fiber lasers mode-locked with alcohol. Opt. Lett. 2015, 40, 3699–3702. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Zhan, L.; Qin, M.L.; Wu, J.; Zhang, L.; Zou, Z.X.; Qian, K. Passively Q-Switched Er-Doped Fiber Lasers Using Alcohol. J. Lightwave Technol. 2015, 33, 4857–4861. [Google Scholar] [CrossRef]
- Ibarra-Escamilla, B.; Durán-Sánchez, M.; Posada-Ramírez, B.; Alvarez-Tamayo, R.I.; Alaniz-Baylón, J.; Bello-Jiménez, M.; Prieto-Cortés, P.; Kuzin, E.A. Passively Q-Switched Thulium-Doped Fiber Laser Using Alcohol. IEEE Photonics Technol. Lett. 2018, 30, 1768–1771. [Google Scholar] [CrossRef]
- Najm, M.M.; Al-Hiti, A.S.; Nizamani, B.; Arof, H.; Zhang, P.; Yasin, M.; Harun, S.W. Passively Q-switched erbium-doped fiber laser with mechanical exfoliation of 8-HQCDCL2H2O as saturable absorber. Optik 2021, 242, 167073. [Google Scholar] [CrossRef]
- Xian, T.H.; Zhan, L.; Gao, L.R.; Zhang, W.Y.; Zhang, W.C. Passively Q-switched fiber lasers based on pure water as the saturable absorber. Opt. Lett. 2019, 44, 863–866. [Google Scholar] [CrossRef]
- Dai, C.S.; Dong, Z.P.; Lin, J.Q.; Yao, P.J.; Xu, L.X.; Chun, G. Passively Q-switched and mode-locked 1.9 μm Tm-doped fiber laser based on pure water as saturable absorber. Acta Phys. Sin. 2022, 71, 174202. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Zhan, L.; Xian, T.H.; Gao, L.R. Generation of Bright/Dark Pulses in an Erbium-Doped Fiber Laser Mode-Locked with Glycerin. J. Lightwave Technol. 2019, 37, 3756–3760. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Jiang, H.J.; Zheng, L.; Liu, N.N.; Zhang, X.D.; Yang, K.; Zhan, L. Passively mode-locked fiber laser based on ethylene glycol. Results Phys. 2024, 60, 107670. [Google Scholar] [CrossRef]
- Tang, D.Y.; Zhao, L.M.; Zhao, B.; Liu, A.Q. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Phys. Rev. A 2005, 72, 043816. [Google Scholar] [CrossRef]
- Grelu, P.; Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photon. 2012, 6, 84–92. [Google Scholar] [CrossRef]
- Burikov, S.; Dolenko, T.; Patsaeva, S.; Starokurov, Y.; Yuzhakov, V. Raman and IR spectroscopy research on hydrogen bonding in water–ethanol systems. Mol. Phys. 2010, 108, 2427–2436. [Google Scholar] [CrossRef]
- Laubereau, A.; von der Linde, D.; Kaiser, W. Direct Measurement of the Vibrational Lifetimes of Molecules in Liquids. Phys. Rev. Lett. 1972, 28, 1162–1165. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Jiang, H.J.; Yang, K.; Liu, N.N.; Geng, L.J.; Hao, Y.Q.; Xian, T.H.; Zhan, L. Bright/dark switchable mode-locked fiber laser based on alcohol. Chin. Opt. Lett. 2024, 22, 031403. [Google Scholar] [CrossRef]
- Zhao, L.M.; Tang, D.Y.; Zhang, H.; Wu, X.; Bao, Q.L.; Loh, K.P. Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene. Opt. Lett. 2010, 35, 3622–3624. [Google Scholar] [CrossRef]
- Yang, N.; Huang, C.Y.; Tang, Y.L.; Xu, J.Q. 12 nJ 2 μm dissipative soliton fiber laser. Laser Phys. Lett. 2015, 12, 055101. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Y.; Lin, J.; Dai, C.; Xu, L.; Yao, P. Linear cavity dissipative soliton mode-locked laser based on polarization-maintaining fiber structure. Laser Technol. 2024, 48, 153–158. [Google Scholar]
- Peng, J.S.; Sorokina, M.; Zeng, H.P. Spectral Correlations in Laser Instabilities Beyond Stable Mode Locking. J. Light. Technol. 2021, 39, 6579–6584. [Google Scholar] [CrossRef]
- Abdelalim, M.A.; Logvin, Y.; Khalil, D.A.; Anis, H. Properties and stability limits of an optimized mode-locked Yb-doped femtosecond fiber laser. Opt. Express 2009, 17, 2264–2279. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Gui, L.L.; Li, X.; Xiao, X.S.; Zhu, H.W.; Yang, C.X. Generation of 35-nJ Nanosecond Pulse from a Passively Mode-Locked Tm, Ho-Codoped Fiber Laser with Graphene Saturable Absorber. Photonics Technol. Lett. 2013, 25, 1447–1449. [Google Scholar] [CrossRef]
- Li, D.J.; Tang, D.Y.; Zhao, L.M.; Shen, D.Y. Mechanism of Dissipative-Soliton-Resonance Generation in Passively Mode-Locked All-Normal-Dispersion Fiber Lasers. J. Lightwave Technol. 2015, 33, 3781–3787. [Google Scholar] [CrossRef]
- Abdelalim, M.A.; Logvin, Y.; Khalil, D.A.; Anis, H. Steady and oscillating multiple dissipative solitons in normal-dispersion mode-locked Yb-doped fiber laser. Opt. Express 2009, 17, 13128–13139. [Google Scholar] [CrossRef] [PubMed]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Jiang, H.; Zheng, L.; Liu, N.; Yang, K.; Zhan, L. Multiple Dissipative Solitons in an Erbium-Doped Fiber Laser Mode-Locked with Ethylene Glycol. Photonics 2025, 12, 1113. https://doi.org/10.3390/photonics12111113
Zhang W, Jiang H, Zheng L, Liu N, Yang K, Zhan L. Multiple Dissipative Solitons in an Erbium-Doped Fiber Laser Mode-Locked with Ethylene Glycol. Photonics. 2025; 12(11):1113. https://doi.org/10.3390/photonics12111113
Chicago/Turabian StyleZhang, Wenyan, Huijie Jiang, Lei Zheng, Nannan Liu, Kun Yang, and Li Zhan. 2025. "Multiple Dissipative Solitons in an Erbium-Doped Fiber Laser Mode-Locked with Ethylene Glycol" Photonics 12, no. 11: 1113. https://doi.org/10.3390/photonics12111113
APA StyleZhang, W., Jiang, H., Zheng, L., Liu, N., Yang, K., & Zhan, L. (2025). Multiple Dissipative Solitons in an Erbium-Doped Fiber Laser Mode-Locked with Ethylene Glycol. Photonics, 12(11), 1113. https://doi.org/10.3390/photonics12111113

