Pulse Shaping in Hybrid Waveguides with the High-Order Kerr Nonlinearity
Abstract
1. Introduction
2. Device Design and Modeling
3. Evolution of Pulses in the Hybrid Waveguides
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MEH-PPV | 2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenvinylene |
| GNLSE | generalized nonlinear Schrödinger equation |
| FWHM | full width at half-maximum |
| FWM | four-wave mixing |
References
- Allison, T.K.; Kunin, A.; Schönhense, G. Cavity-enhanced high-order harmonic generation for high-performance time-resolved photoemission experiments. APL Photonics 2025, 10, 010906. [Google Scholar] [CrossRef]
- Glerean, F.; Rigoni, E.M.; Jarc, G.; Mathengattil, S.Y.; Montanaro, A.; Giusti, F.; Mitrano, M.; Benatti, F.; Fausti, D. Ultrafast pump-probe phase-randomized tomography. Light. Sci. Appl. 2025, 14, 115. [Google Scholar] [CrossRef] [PubMed]
- Turitsyn, S.K.; Prilepsky, J.E.; Le, S.T.; Wahls, S.; Frumin, L.L.; Kamalian, M.; Derevyanko, S.A. Nonlinear Fourier transform for optical data processing and transmission: Advances and perspectives. Optica 2017, 4, 307–322. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, X.; Tang, L.; Liu, X.; Gong, X. High Repetition Rate and High Energy Ultrashort Laser Pulse: The Next Light Source for Attosecond Spectroscopy. ACS Photonics 2025, 12, 2279–2290. [Google Scholar] [CrossRef]
- Tan, D.T.H.; Agarwal, A.M.; Kimerling, L.C. Nonlinear photonic waveguides for on-chip optical pulse compression. Laser Photonics Rev. 2015, 9, 294–308. [Google Scholar] [CrossRef]
- Balciunas, T.; Fourcade-Dutin, C.; Fan, G.; Witting, T.; Voronin, A.A.; Zheltikov, A.M.; Gerome, F.; Paulus, G.G.; Baltuska, A.; Benabid, F. A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre. Nat. Commun. 2015, 6, 6117. [Google Scholar] [CrossRef]
- Travers, J.C.; Grigorova, T.F.; Brahms, C.; Belli, F. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photonics 2019, 13, 547–554. [Google Scholar] [CrossRef]
- Nagy, T.; Simon, P.; Veisz, L. High-energy few-cycle pulses: Post-compression techniques. Adv. Phys. X 2021, 6, 1845795. [Google Scholar] [CrossRef]
- Nuernberger, P.; Vogt, G.; Brixner, T.; Gerber, G. Femtosecond quantum control of molecular dynamics in the condensed phase. Phys. Chem. Chem. Phys. 2007, 9, 2470–2497. [Google Scholar] [CrossRef]
- Weiner, A.M. Ultrafast optical pulse shaping: A tutorial review. Opt. Commun. 2011, 284, 3669–3692. [Google Scholar] [CrossRef]
- Dudley, J.M.; Genty, G.; Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 2006, 78, 1135–1184. [Google Scholar] [CrossRef]
- Dekker, R.; Usechak, N.; Först, M.; Driessen, A. Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides. J. Phys. D Appl. Phys. 2007, 40, R249. [Google Scholar] [CrossRef]
- Yue, Y.; Zhang, L.; Huang, H.; Beausoleil, R.G.; Willner, A.E. Silicon-on-Nitride Waveguide With Ultralow Dispersion Over an Octave-Spanning Mid-Infrared Wavelength Range. IEEE Photonics J. 2012, 4, 126–132. [Google Scholar] [CrossRef]
- Yang, M.; Xu, L.; Wang, J.; Liu, H.; Zhou, X.; Li, G.; Zhang, L. An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 8300607. [Google Scholar] [CrossRef]
- Voronin, A.A.; Zheltikov, A.M. Soliton self-frequency shift decelerated by self-steepening. Opt. Lett. 2008, 33, 1723–1725. [Google Scholar] [CrossRef]
- Panoiu, N.C.; Liu, X.; Osgood, R.M. Self-steepening of ultrashort pulses in silicon photonic nanowires. Opt. Lett. 2009, 34, 947–949. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, Y.; Yue, Y.; Lin, Q.; Painter, O.; Beausoleil, R.G.; Willner, A.E. On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses. Opt. Express 2011, 19, 11584–11590. [Google Scholar] [CrossRef]
- Liao, J.; Tan, Y.; Gao, Y.; Wang, Z.; Sun, Y.; Ma, L.; Li, X. Giant anomalous self-steepening and temporal soliton compression in silicon photonic crystal waveguides. APL Photonics 2021, 6, 086107. [Google Scholar] [CrossRef]
- Zhai, Y.; Xu, L.; Ren, K.; Zhang, L. Reversed self-steepening in Si3N4-organic hybrid slot waveguides with engineered nonlinearity. J. Phys. D Appl. Phys. 2024, 57, 465105. [Google Scholar] [CrossRef]
- Bose, S.; Melchert, O.; Willms, S.; Babushkin, I.; Morgner, U.; Demircan, A.; Agrawal, G.P. Role of frequency dependence of the nonlinearity on a soliton’s evolution in photonic crystal fibers. Opt. Lett. 2021, 46, 3921–3924. [Google Scholar] [CrossRef]
- Nielsen, M.P.; Shi, X.; Dichtl, P.; Maier, S.A.; Oulton, R.F. Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing. Science 2017, 358, 1179–1181. [Google Scholar] [CrossRef]
- Das, S.; Wenner, B.R.; Allen, J.W.; Allen, M.S.; Vasilyev, M. Investigation of hybrid silicon-nitride/polymer waveguides for second-harmonic generation. IEEE Photonics J. 2019, 11, 4500509. [Google Scholar] [CrossRef]
- Wang, Y.; He, S.; Gao, X.; Ye, P.; Lei, L.; Dong, W.; Zhang, X.; Xu, P. Enhanced optical nonlinearity in a silicon-organic hybrid slot waveguide for all-optical signal processing. Photonics Res. 2022, 10, 50–58. [Google Scholar] [CrossRef]
- Ikeda, K.; Saperstein, R.E.; Alic, N.; Fainman, Y. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt. Express 2008, 16, 12987–12994. [Google Scholar] [CrossRef]
- Luke, K.; Okawachi, Y.; Lamont, M.R.; Gaeta, A.L.; Lipson, M. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 2015, 40, 4823–4826. [Google Scholar] [CrossRef]
- Bader, M.A.; Marowsky, G.; Bahtiar, A.; Koynov, K.; Bubeck, C.; Tillmann, H.; Hörhold, H.-H.; Pereira, S. Poly (p-phenylenevinylene) derivatives: New promising materials for nonlinear all-optical waveguide switching. J. Opt. Soc. Am. B 2002, 19, 2250–2262. [Google Scholar] [CrossRef]
- Afshar, S.; Monro, T.M. A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. Opt. Express 2009, 17, 2298–2318. [Google Scholar] [CrossRef]
- Lin, Q.; Painter, O.J.; Agrawal, G.P. Nonlinear optical phenomena in silicon waveguides: Modeling and applications. Opt. Express 2007, 15, 16604–16644. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Bao, C.; Li, S.A.; Wang, Z.; Geng, W.; Wang, Y.; Han, X.; Jiang, J.; Zhang, W.; Pan, Z. Recent progress of supercontinuum generation in nanophotonic waveguides. Laser Photonics Rev. 2023, 17, 2200205. [Google Scholar] [CrossRef]
- Wang, Y.; Yue, R.; Han, H.; Liao, X. Raman study of structural order of a-SiNx: H and its change upon thermal annealing. J. Non-Cryst. Solids 2001, 291, 107–112. [Google Scholar] [CrossRef]
- Zhao, P.; Ye, Z.; Karlsson, M.; Torres-Company, V.; Andrekson, P.A. Low-Noise Phase-sensitive Parametric Amplifiers Based on Integrated Silicon-Nitride-Waveguides for Optical Signal Processing. J. Lightwave Technol. 2022, 40, 1847–1854. [Google Scholar] [CrossRef]
- Weiner, A.M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 2000, 71, 1929–1960. [Google Scholar] [CrossRef]
- Efimov, A.; Reitze, D.H. Programmable dispersion compensation and pulse shaping in a 26-fs chirped-pulse amplifier. Opt. Lett. 1998, 23, 1612–1614. [Google Scholar] [CrossRef] [PubMed]
- Bardeen, C.J.; Yakovlev, V.V.; Squier, J.A.; Wilson, K.R.; Carpenter, S.D.; Weber, P.M. Effect of pulse shape on the efficiency of multiphoton processes: Implications for biological microscopy. J. Biomed. Opt. 1999, 4, 362–367. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, Y.; Xu, L.; Li, Y.; Zhang, L. Pulse Shaping in Hybrid Waveguides with the High-Order Kerr Nonlinearity. Photonics 2025, 12, 1103. https://doi.org/10.3390/photonics12111103
Zhai Y, Xu L, Li Y, Zhang L. Pulse Shaping in Hybrid Waveguides with the High-Order Kerr Nonlinearity. Photonics. 2025; 12(11):1103. https://doi.org/10.3390/photonics12111103
Chicago/Turabian StyleZhai, Yuke, Lijuan Xu, Yuan Li, and Lin Zhang. 2025. "Pulse Shaping in Hybrid Waveguides with the High-Order Kerr Nonlinearity" Photonics 12, no. 11: 1103. https://doi.org/10.3390/photonics12111103
APA StyleZhai, Y., Xu, L., Li, Y., & Zhang, L. (2025). Pulse Shaping in Hybrid Waveguides with the High-Order Kerr Nonlinearity. Photonics, 12(11), 1103. https://doi.org/10.3390/photonics12111103
