Harmonics-Assisted 50-Fold Optical Phase Amplification with a Self-Mixing Thin-Slice Nd:GdVO4 Laser with Wide-Aperture Laser-Diode Pumping
Abstract
1. Introduction
2. Self-Induced Skew-Cosh Gaussian Mode Laser Oscillation
2.1. Wide-Aperture LD Pumping and Slope Efficiency
2.2. Lasing Beam Profiles
2.3. Transverse Spatial Hole-Burning of Population Inversions
- 1.
- The pump-dependent intracavity circulating photon emission rate of the proceeding TEM00 mode, which is given by Icir = Is (I/Ith − 1) o/(πwo2)ln(−R2), where Is = hνo/σeτ is the emission saturation intensity, Ith is the threshold pump intensity and Po is TEM00 pump-dependent output power component as estimated from the input–output characteristics in Figure 1 and the weighting number for a TEM00 field.
- 2.
- The remaining atom excitation rate (i.e., remaining population inversions) in the presence of the preceding TEM00 mode for various pump intensities.
- 3.
- The effective atom excitation rate for the annular region defined as the hole depth, 10log(Nr/NTEM), where Nr is the remaining atom excitation rate in Figure 4b.
3. Self-Mixing Modulation in Modified Skew Cosh Gaussian Mode Laser
3.1. Phase Amplification in Weak Feedback Regime
3.2. Phase Amplification in Intermediate Feedback Regime
3.3. Phase Amplification in Strong Feedback Regime
3.4. Overview of Nonlinear Dynamics of Hybrid Skew ch-G Mode Subjected to Subharmonic Self-Mixing Modulation
4. Statistical Properties of Collective Dynamics in Lower- and Higher-Frequency Bands
5. Summary and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kogelnik, H.; Li, T. Laser beams and resonators. Appl. Opt. 1966, 5, 1550–1567. [Google Scholar] [CrossRef]
- Arecchi, F.T.; Boccaletti, S.; Ramazza, P. Pattern formation and competition in nonlinear optics. Phys. Rep. 1999, 318, 1–83. [Google Scholar] [CrossRef]
- Lugiato, L.A.; Brambilla, M.; Gatti, A. Optical Pattern Formation in Advances in Atomic, Molecular and Optical Physics; Bederson, B., Walther, H., Eds.; Academic: New York, NY, USA, 1998; Volume 40, pp. 229–306. [Google Scholar]
- Rosanov, N.N. Spatial Hysteresis and Optical Patterns; Springer: New York, NY, USA, 2002. [Google Scholar]
- Rosanov, N.N.; Fedorov, S.V.; Shatsev, A.N. Curvilinear motion of multivortex laser-soliton complexes with strong and weak coupling. Phys. Rev. Lett. 2005, 95, 053903. [Google Scholar] [CrossRef]
- Firth, W.J.; Harkness, G.K. Existence, Stability and Properties of Cavity Solitons in Spatial Solitons; Springer Series in Optical Sciences; Trillo, S., Torruellas, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 82, pp. 343–358. [Google Scholar]
- Lugiato, L.A. Introduction to the feature section on cavity solitons: An overview. IEEE J. Quantum Electron. 2003, 39, 193–196. [Google Scholar] [CrossRef]
- Ackemann, T.; Barland, S.; Tredicce, J.R.; Cara, M.; Balle, S.; Jäger, R.; Grabherr, M.; Miller, M.; Ebeling, K.J. Spatial structure of broad-area vertical-cavity regenerative amplifiers. Opt. Lett. 2000, 25, 814–816. [Google Scholar] [CrossRef]
- Otsuka, K.; Chu, C.-S. Generation of vortex array beams from a thin-slice solid-state laser with shaped wide-aperture laser-diode pumping. Opt. Lett. 2009, 34, 10–13. [Google Scholar] [CrossRef]
- Otsuka, K. Self-mixing thin-slice solid-state laser metrology. Sensors 2011, 11, 2195–2245. [Google Scholar] [CrossRef]
- Niu, H.; Li, J.; Niu, Y.X. Laser feedback interferometry and appli cations: A review. Opt. Eng. 2017, 56, 050901. [Google Scholar]
- Liu, B.; Jiang, Y.; Ji, H. Sensing by dynamics of lasers with ex ternal optical feedback: A review. Photonics 2022, 9, 450. [Google Scholar] [CrossRef]
- Otsuka, K.; Sudo, S. Self-mixing interference in a thin-slice solid-state laser with few feedback photons per observation period. Phys. Rev. A 2022, 106, 053504. [Google Scholar] [CrossRef]
- Nagata, T.; Okamoto, J.; O’Brien, L.; Sasaki, K.; Takeuchi, S. Beating the standard quantum limit with four-entangled photons. Science 2007, 316, 726–729. [Google Scholar] [CrossRef]
- Georgi, P.; Massaro, M.; Luo, K.-H.; Sain, B.; Montaut, N.; Herrmann, H.; Weiss, T.; Li, G.; Silberhorn, C.; Zentgraf, T. Metasurface interferometry toward quantum sensors. Light Sci. Appl. 2019, 8, 70. [Google Scholar] [CrossRef]
- Thomas, P.; Ruscio, L.; Morin Oand Rempe, G. Efficient generation of entangled multiphoton graph states from a single atom. Nature 2022, 208, 677–681. [Google Scholar] [CrossRef]
- Wang, X.-L.; Chen, L.-K.; Li, W.; Huang, H.L.; Liu, C.; Chen, C.; Luo, Y.H.; Su, Z.E.; Wu, D.; Li, Z.D.; et al. Experimental ten-photon entanglement. Phys. Rev. Lett. 2016, 117, 210502. [Google Scholar] [CrossRef]
- Afek, I.; Ambar, O.; Silberberg, Y. High-NOON states by mixing quantum and classical light. Science 2010, 328, 879–881. [Google Scholar] [CrossRef]
- Li, W.-Z.; Yang, C.; Zhou, Z.-Y.; Li, Y.; Li, Y.-H.; Niu, S.-J.; Ge, Z.; Chen, L.; Guo, G.-C.; Shi, B.-S. Harmonics-assisted optical phase amplifier. Light Sci. Appl. 2022, 11, 312. [Google Scholar] [CrossRef]
- Tian, N.; Tan, Y. Intracavity-dynamics-based optical phase amplifier with over tenfold amplification. Photonic Res. 2023, 11, 1892–1901. [Google Scholar] [CrossRef]
- Singh, D.; Malik, H.K. Terahertz generation by mixing of two super-Gaussian laser beams in collisional plasma. Phys. Plasmas 2014, 21, 083105. [Google Scholar] [CrossRef]
- Salin, F.; Squier, J. Gain guiding in solid-state lasers. Opt. Lett. 1992, 17, 1352–1354. [Google Scholar] [CrossRef]
- Jacinto, C.; Messias, D.N.; Andrade, A.A.; Lima, S.M.; Baesso, M.L.; Catunda, T. Thermal lens and Z-scan measurements: Thermal and optical properties of laser glasses—A review. J. Non-Cryst. Solids 2006, 352, 3582–3597. [Google Scholar] [CrossRef]
- Godin, T.; Moncorgé, R.; Doualan, J.-L.; Fromager, M.; Ait-Ameur, K.; Antonio Cruz, A.; Catunda, T. Optically pump-induced athermal and nonresonant refractive index changes in the reference Cr-doped laser materials: Cr:GSGG and ruby. J. Opt. Soc. Am. 2012, 29, 1055–1064. [Google Scholar] [CrossRef]
- Otsuka, K.; Aizawa, Y. Gain circulation in multimode lasers. Phys. Rev. Lett. 1994, 72, 2701–2704. [Google Scholar] [CrossRef] [PubMed]
- Taimre, T.; Nikolic, M.; Bertling, K.; Lim, Y.L.; Bosch, T.; Rakic, A.D. Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing. Adv. Opt. Photonics 2015, 7, 570–631. [Google Scholar] [CrossRef]
- Lamela, H.; Roycroft, B.; Acedo, P.; Santos, R.; Carpintero, G. Experimental modulation bandwidth beyond the relaxation oscillation frequency in a monolithic twin-ridge laterally coupled diode laser based on lateral mode locking. Opt. Lett. 2002, 27, 303–305. [Google Scholar] [CrossRef]
- Dods, S.R.A.; Ogura, M.; Watanabe, M. Small-signal analysis of semiconductor lasers modulated at frequencies on the order of the beat frequency. IEEE J. Quantum. Electron. 1993, 29, 2631–2638. [Google Scholar] [CrossRef]


















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otsuka, K.; Sudo, S. Harmonics-Assisted 50-Fold Optical Phase Amplification with a Self-Mixing Thin-Slice Nd:GdVO4 Laser with Wide-Aperture Laser-Diode Pumping. Photonics 2025, 12, 1098. https://doi.org/10.3390/photonics12111098
Otsuka K, Sudo S. Harmonics-Assisted 50-Fold Optical Phase Amplification with a Self-Mixing Thin-Slice Nd:GdVO4 Laser with Wide-Aperture Laser-Diode Pumping. Photonics. 2025; 12(11):1098. https://doi.org/10.3390/photonics12111098
Chicago/Turabian StyleOtsuka, Kenju, and Seiichi Sudo. 2025. "Harmonics-Assisted 50-Fold Optical Phase Amplification with a Self-Mixing Thin-Slice Nd:GdVO4 Laser with Wide-Aperture Laser-Diode Pumping" Photonics 12, no. 11: 1098. https://doi.org/10.3390/photonics12111098
APA StyleOtsuka, K., & Sudo, S. (2025). Harmonics-Assisted 50-Fold Optical Phase Amplification with a Self-Mixing Thin-Slice Nd:GdVO4 Laser with Wide-Aperture Laser-Diode Pumping. Photonics, 12(11), 1098. https://doi.org/10.3390/photonics12111098

