Structure-Modulated Long-Period Fiber Gratings: A Review
Abstract
1. Introduction
2. Fabrication of SM-LPFGs
2.1. CO2 Laser Fabrication of SM-LPFGs
2.2. HF Corrosion Method Fabrication of SM-LPFGs
2.3. Arc-Discharge Fabrication of SM-LPFGs
2.4. Fabrication of SM-LPFGs by Femtosecond Laser
- (a).
- Refractive Index Modulation: Induces a permanent, localized refractive index change within the fiber via multiphoton absorption at the focal point.
- (b).
- Structural Ablation: Directly ablates material using a “cold ablation” effect to etch periodic structures, such as grooves, onto or within the fiber.
2.5. Others
3. Characterization of SM-LPFGs
3.1. SM-LPFGs for Strain Sensing
3.2. SM-LPFGs for Torsion Sensing
3.3. SM-LPFGs for Refractive Index Sensing
3.4. SM-LPFGs for Bending Sensing
3.5. Other Sensing
3.6. Dual-Parameter Sensing and Decoupling Strategies
3.7. Chapter Summary
4. Application of SM-LPFGs
5. Discussion of SM-LPFGs
- (a)
- LPFGs fabricated via unilateral grooving or induced core distortion exhibit exceptionally high sensitivity within low-strain regimes. However, the former method renders the SM-LPFG highly susceptible to fracture under transverse pressure, while the latter is considered an unstable modulation technique that is difficult to reproduce.
- (b)
- Conversely, SM-LPFGs produced by the tapering method feature a finer waist region, which enhances the interaction between the evanescent field and the external environment. This process, however, is prone to amplifying pre-existing surface micro-cracks or defects due to thermal stress, leading to fiber breakage. Post-fabrication, these tapered LPFGs require meticulous handling during packaging and are vulnerable to static fatigue, which curtails their operational lifetime.
- (c)
- Embedded LPFGs offer the flexibility to utilize fibers with different core diameters or even specialty fibers. This approach necessitates careful optimization of the duty cycle to balance the contribution of the standard single-mode fiber within the composite structure. A significant drawback is the fabrication process, which often relies on manual splicing and is thus subject to inconsistencies stemming from fiber cleavers and instrument clamping fixtures.
- (d)
- LPFGs formed through misalignment splicing can achieve a direction-dependent bending response. However, this method invariably leads to high insertion loss and a pronounced degradation of mechanical integrity.
- (e)
- Similarly, periodic modulation of specialty optical fibers can yield a bending response in two or more directions. The primary impediment here is the prohibitive cost of specialty fibers, which stems from their complex manufacturing processes.
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deng, Y.; Ren, W.; Wang, X. Scientometric Analysis and Research Trends in Optical Fiber Grating Sensors: A Review. Photonics 2025, 12, 349. [Google Scholar] [CrossRef]
- Guo, J.; Zuo, X. A Novel FBG-Based Sensing Array for Interaction Force Awareness During Colonoscopy. IEEE/ASME Trans. Mechatron. 2025, 3576832. [Google Scholar] [CrossRef]
- Lorenzutti, P.; Coimbra, J.; Menegardo, R.; Mayag, L.; Souza, E.; Morais, E.; Frizera, A.; Diaz, C.; Leal-Junior, A. Fiber Bragg Gratings Sensor System for Kinematic and Dynamic Assessment in Lower Limb Robotic Rehabilitation. IEEE Sens. J. 2025, 25, 19275–19281. [Google Scholar] [CrossRef]
- Barhemat, R.; Poorghasem, S.; Zhang, Q.; Tian, Y.; Bao, Y. Feasibility study on scour monitoring for subsea cables of offshore wind turbines using distributed fiber optic sensors. Renew. Energy 2025, 250, 123378. [Google Scholar] [CrossRef]
- Xiong, L.; Jiang, G.Z.; Guo, Y.X.; Liu, H.H. A Three-Dimensional Fiber Bragg Grating Force Sensor for Robot. IEEE Sens. J. 2018, 18, 3632–3639. [Google Scholar] [CrossRef]
- Li, X.Y.; Liu, Y.; Li, Y.; Qu, S. Vector Bending Sensor Based on Low-Cost Single-Channel Measurement and Highly Reliable Three-Peak Reconstruction Algorithm. J. Light. Technol. 2025, 43, 5276–5282. [Google Scholar] [CrossRef]
- Hussain, S.; Ghaffar, A.; Musavi, S.; Mehdi, M.; Ahemd, M.; Yu, J.; Lei, C.; Mehdi, R.; Mehd, I. Fiber optic sensor embedded in robotic systems for 3-D orientation assessment using polymer fiber. Opt. Fiber Technol. 2023, 81, 103559. [Google Scholar] [CrossRef]
- Vengsarkar, A.; Lemaire, P.; Judkins, J.; Bhatia, V.; Erdogan, T.; Sipe, J. Long-period fiber gratings as band-rejection filters. J. Light. Technol. 1996, 14, 58–65. [Google Scholar] [CrossRef]
- Grattan, K.; Sun, T. Fiber optic sensor technology: An overview. Sens. Actuators A Phys. 2000, 82, 40–61. [Google Scholar] [CrossRef]
- Mihailov, S.J. Fiber Bragg Grating Sensors for Harsh Environments. Sensors 2012, 12, 1898–1918. [Google Scholar] [CrossRef]
- Joe, H.; Yun, H.; Jo, S.; Jun, M.; Min, B. A Review on Optical Fiber Sensors for Environmental Monitoring. Int. J. Precis. Eng. Manuf. Technol. 2018, 5, 173–191. [Google Scholar] [CrossRef]
- Deng, M.; Xu, J.; Zhang, Z.; Bai, Z.; Liu, S.; Wang, Y.; Zhang, Y.; Liao, C.; Jin, W.; Peng, G.; et al. Long period fiber grating based on periodically screw-type distortions for torsion sensing. Opt. Express 2017, 25, 14308–14316. [Google Scholar] [CrossRef]
- Shu, X.; Zhang, L.; Bennion, I. Sensitivity characteristics of long-period fiber gratings. J. Light. Technol. 2002, 20, 255–266. [Google Scholar] [CrossRef]
- Kim, M.; Lee, D.; Hong, B.; Chuan, H. Performance characteristics of long-period fiber-gratings made from periodic tapers induced by electric-arc discharge. Korean Phys. Soc. 2002, 40, 369–373. [Google Scholar]
- Taha, B.; Ali, N.; Sapiee, N.; Fadhel, M.; Yeh, R.; Bachok, N.; Al Mashhadany, Y.; Arsa, N. Comprehensive Review Tapered Optical Fiber Configurations for Sensing Application: Trend and Challenge. Biosensors 2021, 11, 253. [Google Scholar] [CrossRef]
- Cai, J.; Liu, Y.; Shu, X. Long-Period Fiber Grating Sensors for Chemical and Biomedical Applications. Sensors 2023, 23, 542. [Google Scholar] [CrossRef]
- Geng, T.; Su, C.; Zhang, S.; Ma, Y. Recent progress in embedded LPFGs. Measurement 2023, 222, 113686. [Google Scholar] [CrossRef]
- Tripathi, S.; Bock, W.; Mikulic, P.; Chinnappan, R.; Ng, A.; Tolba, M.; Zourob, M. Long period grating based biosensor for the detection of Escherichia coli bacteria. Biosens. Bioelectron. 2012, 35, 308–312. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, Z.; Zhang, Y.; Chen, G.; Xiao, H. A Temperature Self-Compensated LPFG Sensor for Large Strain Measurements at High Temperature. IEEE Trans. Instrum. Meas 2010, 59, 2997–3004. [Google Scholar] [CrossRef]
- Bhatia, V.; Vengsarkar, A. Optical fiber long-period grating sensors. Opt. Lett. 1996, 21, 692–694. [Google Scholar] [CrossRef]
- Davis, D.; Gaylord, T.; Glytsis, E.; Kosinski, S.; Mettler, S.; Vengsarkar, A. Long-period fiber grating fabrication with focused CO2 laser pulses. Electron. Lett. 1998, 34, 302–303. [Google Scholar] [CrossRef]
- Rao, Y.; Wang, Y.; Ran, Z.; Zhu, T. Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses. J. Light. Technol. 2003, 21, 1320–1327. [Google Scholar]
- Wang, Y.; Wang, D.; Jin, W.; Rao, Y.; Peng, G. Asymmetric long period fiber gratings fabricated by use of CO2 laser to carve periodic grooves on the optical fiber. Appl. Phys. Lett. 2006, 89, 151105. [Google Scholar] [CrossRef]
- Rao, Y.; Ran, Z.; Liao, X.; Deng, H. Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain. Opt. Express 2007, 15, 14936–14941. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Review of long period fiber gratings written by CO2 laser. Appl. Phys. 2010, 108, 081101. [Google Scholar] [CrossRef]
- Huang, L.G.; Zhao, Y.X.; Li, Y.J.; Liu, S.L.; Zhou, H.L.; Gao, L.; Shi, L.L.; Zhou, G.Y.; Zhu, T. Long period fiber gratings in anti-resonant hollow core fiber. Appl. Phys. Express 2025, 18, 012002. [Google Scholar] [CrossRef]
- Liu, Z.; Hong, L.; Zhao, X.; Chen, S.; Rao, C.; Zhu, Y.; Mou, C.; Liu, Y. Torsion-Insensitive Curvature Sensing via Azimuthal-Order-Controlled Cladding Mode Coupling in Long-Period Fiber Gratings. IEEE Sens. J. 2025, 25, 19250–19257. [Google Scholar] [CrossRef]
- Barino, F.; Dos Santos, A. Self-Attention AI Model for Practical Sensor Networking: Demodulation of Long-Period Fiber Grating Sensor Cascaded with FBG Sensor Array. IEEE Trans. Instrum. Meas. 2025, 74, 2531810. [Google Scholar] [CrossRef]
- Nakanishi, H.; Nishimoto, T.; Nakamura, R.; Yotsumoto, A.; Yoshida, T.; Shoji, S. Studies on SiO2-SiO2 bonding with hydrofluoric acid: Room temperature and low stress bonding technique for MEMS. Sens. Actuators A Phys. 2000, 79, 237–244. [Google Scholar] [CrossRef]
- Hnatovsky, C.; Taylor, R.; Simova, E.; Bhardwaj, V.; Rayner, D.; Corkum, P. Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica. Opt. Lett 2005, 30, 1867–1869. [Google Scholar] [CrossRef]
- Zhao, S.; Du, C.; Wang, Q.; Jia, B.; Zhang, L.; Cui, L.; Deng, X.; Chen, S. A long period fiber grating seawater salinity sensor based on bend insensitive single mode fiber. Opt. Fiber Technol. 2023, 77, 103269. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Chen, W.; Zhou, J.; Hao, J.; Zeng, X.; Yang, X.; Yan, Y.; Sun, W.; Geng, T. High Sensitivity Refractometer Based on Tapering Two-Mode Fiber Embedded Long-Period Fiber Grating. IEEE Photonics Technol. Lett. 2023, 35, 136–139. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, Z.Q.; Wan, Y.; Ma, Y.H.; Chen, S.Y.; Sun, B.; Zhang, Z.X.; Liu, Y.Q. Directional Magnetic Field Sensing Characteristics of Polarization-Insensitive Long-Period Grating. IEEE Sens. J. 2025, 25, 4605–4611. [Google Scholar] [CrossRef]
- Del Villar, I.; Partridge, M.; Rodriguez, W.; Fuentes, O.; Socorro, A.; Diaz, S.; Corres, J.; James, S.; Tatam, R. Sensitivity Enhancement in Low Cutoff Wavelength Long-Period Fiber Gratings by Cladding Diameter Reduction. Sensors 2017, 17, 2094. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Wang, Y.; Liao, C.; Zhou, J.; Zhong, X.; Wang, G.; Sun, B.; He, J. Long Period Fiber Gratings Inscribed by Periodically Tapering a Fiber. IEEE Photonics Technol. Lett. 2014, 26, 698–701. [Google Scholar] [CrossRef]
- Xu, X.; Lu, C.; Jin, X.; Lv, M.; Sun, C.; Yan, Q.; Zhang, S.; Wang, J.; Rui, Z.; Xiang, Z. A Vector Bending Sensor Based on a Core-Offset Long Period Fiber Grating Induced by an Arc-Discharge. IEEE Sens. J. 2021, 21, 24129–24133. [Google Scholar] [CrossRef]
- Tian, T.; Li, M.; Ma, Y.; Lu, C.; Li, S.; Geng, T.; Yuan, L. Sensitivity-Enhanced and Compact Refractometer Based on Double Assembled Long-Period Fiber Gratings with Tapered Fiber Structure. IEEE Sens. J. 2023, 23, 21279–21284. [Google Scholar] [CrossRef]
- Xue, X.; Zhang, W.; Yin, L.; Wei, S.; Gao, S.; Geng, P.; Ruan, J. All-fiber intermodal Mach-Zehnder interferometer based on a long-period fiber grating combined with a fiber bitaper. Opt. Commun. 2012, 285, 3935–3938. [Google Scholar] [CrossRef]
- Kalachev, A.; Pureur, V.; Nikogosyan, D. Investigation of Long-Period Fiber Gratings Induced by High-Intensity Femtosecond UV Laser Pulses. Opt. Commun. 2005, 246, 107–115. [Google Scholar] [CrossRef]
- Dong, X.; Xie, Z.; Song, Y.; Yin, K.; Luo, Z.; Duan, J.; Wang, C. Highly sensitive torsion sensor based on long period fiber grating fabricated by femtosecond laser pulses. Opt. Laser Technol. 2017, 97, 248–253. [Google Scholar] [CrossRef]
- Gao, S.; Liu, Y.; Yang, J.; Duan, Z.; Yin, T.; Liu, Z.; Shi, J.; Yuan, L.; Guan, C. Ultrasensitive Refractive Sensor Based on Femtosecond Laser Inscribed Long-Period Fiber Grating With a Few Microcavities. J. Light. Technol. 2024, 42, 1696–1701. [Google Scholar] [CrossRef]
- Su, L.; Qiu, X.; Guo, R.; Jing, Y.; Yang, C.; Liu, S. Long-Period Grating with Asymmetrical Modulation for Curvature Sensing. Appl. Sci. 2024, 14, 1895. [Google Scholar] [CrossRef]
- Dai, X.; Shi, J.; Zhao, X.; Su, Y.D.; Dai, S.; Zhang, P. Detection of riboflavin concentration by sol-gel silica coated dual-peak long period fiber grating sensor. Opt. Express 2004, 32, 36286–36297. [Google Scholar] [CrossRef]
- Heck, M.; Nolte, S.; Tünnermann, A.; Vallée, R.; Bernier, M. Femtosecond-written long-period gratings in fluoride fibers. Opt. Lett. 2018, 43, 1994. [Google Scholar] [CrossRef]
- Lerner, A.; Cotillard, R.; Blanchet, T.; Roussel, N.; Bouwmans, G.; Laffont, G. An intrinsic sensitivity calibration scheme for high temperature measurements using femtosecond point-by-point written fiber Bragg gratings. Opt. Laser Technol. 2024, 170, 110278. [Google Scholar] [CrossRef]
- Zhao, X.; Li, H.; Rao, B.; Wang, M.; Wu, B.; Wang, Z. Spectral Characteristics of Square-Wave-Modulated Type II Long-Period Fiber Gratings Inscribed by a Femtosecond Laser. Sensors 2021, 21, 3278. [Google Scholar] [CrossRef] [PubMed]
- Bu, W.; Wang, X.; Wu, Z.; Lin, J.; Shum, P.P.; Pu, J. Temperature-insensitive refractive index sensor based on high-order-resonance short-line long-period fiber grating. Sens. Actuators A Phys. 2023, 360, 114540. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Z.; Gao, G.; Geng, G.; Xue, X.; Bai, B.; Liang, H. Long-Period Fiber Grating Cascaded to an S Fiber Taper for Simultaneous Measurement of Temperature and Refractive Index. IEEE Photonics Technol. Lett. 2019, 25, 888–891. [Google Scholar] [CrossRef]
- Qian, J.; Wang, W.; Chen, H.; Zhang, J.; Liu, G.; Guo, Z.; Zhang, X.; Li, X. In-Fiber Breathing Monitoring Sensor by Micro-Tapered Long-Period Grating Structure. IEEE Sens. J. 2023, 23, 154–158. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, L.; Mou, M. Polarization-Maintaining Fiber Long-Period Grating Based Vector Curvature Sensor. IEEE Photonics Technol. Lett. 2021, 33, 358–361. [Google Scholar] [CrossRef]
- Jin, X.R.; Sun, C.T.; Duan, S.J.; Liu, W.L.; Li, G.A.; Zhang, S.; Chen, X.D.; Zhao, L.; Lu, C.L.; Yang, X.H. High Strain Sensitivity Temperature Sensor Based on a Secondary Modulated Tapered Long Period Fiber Grating. IEEE Photonics J. 2019, 11, 7100908. [Google Scholar] [CrossRef]
- Guo, Z.; Bai, Y.; Zhang, W.; Liu, S.; Pan, Y.; Zhang, X.; Zhang, J.; Chen, H.; Li, X. Temperature Compensated Magnetic Field Sensor Based on Magnetic Fluid Infiltrated Cascaded Structure of Micro-Tapered Long-Period Fiber Grating and Fiber Bragg Grating. Sens. Actuators A Phys. 2023, 358, 114425. [Google Scholar] [CrossRef]
- Anelli, F.; Annunziato, A.; Loconsole, A.M.; Le Pays du Teilleul, P.; Cozic, S.; Prudenzano, F. LPG in Fluoride Optical Fiber via Micro-Tapering Technique: Mid-IR Mode Coupling. J. Light. Technol. 2025, 43, 2803. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, D. Theoretical study of Electro-optic effect and elasto-optic effect in chirped fiber grating with uniaxial crystal materials cladding. Opt. Quantum Electron. 2024, 36, 469–481. [Google Scholar]
- Bhowmik, K. On photoelastic stress measurements in optically absorbing medium. Opt. Commun. 2002, 210, 165–172. [Google Scholar] [CrossRef]
- Jin, X.; Lu, C.; Lin, J.; Chen, X.; Li, X.; Xiang, Z.; Yang, X.; Tong, C.; Yan, Y.; Geng, T. A strain sensor with low temperature crosstalk based on re-modulation of D-shaped LPFG. Measurement 2021, 177, 109300. [Google Scholar] [CrossRef]
- Shafiq, M.; Gu, Z.Q. Deep Residual Learning for Image Recognition: A Survey. Appl. Sci. 2022, 12, 8972. [Google Scholar] [CrossRef]
- Sun, C.; Lu, C.; Jin, X.; Chen, X.; Yan, Q.; Lin, J.; Xu, X.; Lv, M.; Zhang, S.; Ma, Y.; et al. A New Sensor for Simultaneous Measurement of Strain and Temperature. IEEE Photonics Technol. Lett. 2020, 32, 1253–1256. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, J.; Wang, S.; Li, X.; Yan, Y.; Tong, C.; Geng, T.; Sun, W.; Yuan, L. Fiber Strain Sensor Based on Incline Plane-Shaped Long Period Fiber Grating Induced by CO2 Laser Polishing. IEEE J. Quantum Electron. 2021, 57, 7500205. [Google Scholar] [CrossRef]
- Tian, K.; Zhao, Z.; Zhang, M.; Zhang, M.; Lewis, E.; Farrell, G.; Wang, P. A Long-Period Fiber Grating Sensor Based on a Core-Cladding Misalignment Structure. J. Light. Technol. 2022, 40, 5316–5321. [Google Scholar] [CrossRef]
- Zhang, S.; Deng, S.; Geng, T.; Sun, C.; Niu, H.; Li, X.; Wang, Z.; Li, X.; Ma, Y.; Yang, W.; et al. A miniature ultra long period fiber grating for simultaneous measurement of axial strain and temperature. Opt. Laser Technol. 2020, 126, 106121. [Google Scholar] [CrossRef]
- Zhang, S.; Geng, T.; Wang, S.; Niu, H.; Li, X.; Deng, S.; Wang, Z.; Sun, C.; Ma, Y.; Yang, W.; et al. High-Sensitivity Strain and Temperature Simultaneous Measurement Sensor Based on Multimode Fiber Chirped Long-Period Grating. IEEE Sens. J. 2020, 20, 14843–14849. [Google Scholar] [CrossRef]
- Chen, X.; Chen, W.; Liu, Y.; Liu, S.; Zhang, S.; Yan, Q.; Sun, W.; Geng, T. Sensitivity-Enhanced Strain Sensor with a Wide Dynamic Range Based on a Novel Long-Period Fiber Grating. IEEE Sens. J. 2022, 22, 3196–3201. [Google Scholar] [CrossRef]
- Fu, X.; Zhou, J.; Fu, Z.; Xu, M.; Huang, S.; Jin, W.; Fu, G.; Bi, W. A Multiparameter Sensor Based on Dumbbell-Shaped Double-Cladding Fiber Structure Cascaded Long Period Fiber Grating. IEEE Sens. J. 2022, 22, 14118–14127. [Google Scholar] [CrossRef]
- Niu, C.; Li, X.; Wang, J.; Chen, J.; Kou, Y.; Yang, X.; Lu, C.; Geng, T.; Sun, W. Sensitivity-Adjustable Strain Sensor Based on Shrinking Long Period Fiber Grating. IEEE Photonics Technol. Lett. 2024, 36, 1161–1164. [Google Scholar] [CrossRef]
- Yin, T.; He, X.; Yang, J.; Jin, Y.; Liu, Y.; Gao, S.; Ye, P.; Shi, J.; Yuan, L.; Guan, C. Ultrasensitive Strain Sensor Based on V-Groove Structure Long-Period Fiber Grating. IEEE Photonics Technol. Lett. 2025, 37, 133–136. [Google Scholar] [CrossRef]
- Li, Y.; Lu, P.; Zhang, C.; Ni, W.; Liu, D.; Zhang, J. Sensing Characterization of Helical Long Period Fiber Grating Fabricated by a Double-Side CO2 Laser in Single-Mode Fiber. IEEE Photonics J. 2019, 11, 6801608. [Google Scholar]
- Li, Y.; Li, M.; Tian, T.; Dai, Z.; Ma, Y.; Li, S.; Lu, C.; Geng, T. A Strain Sensor Based on Core-Distortion Long-Period Fiber Grating. IEEE Photonics Technol. Lett. 2023, 35, 1339–1342. [Google Scholar] [CrossRef]
- Liang, K.; Tian, T.; Ma, Y.; Cui, J.; Sun, W.; Geng, T.; Yuan, L. A Highly Sensitive Strain Sensor Based on Hook-Shaped Core Long-Period Fiber Grating. IEEE Sens. J. 2025, 25, 2699–2704. [Google Scholar] [CrossRef]
- Ma, Y.; Dai, Z.; Geng, T. Ultrasensitive Strain Sensor Based on Core-Bending Long Period Fiber Grating. IEEE Photonics Technol. Lett. 2023, 35, 269–272. [Google Scholar] [CrossRef]
- Lin, C.; Wang, L. Loss-tunable long period fiber grating made from etched corrugation structure. Electron. Lett. 1999, 35, 1872–1873. [Google Scholar] [CrossRef]
- Wang, L.; Lin, C.; Chern, G. A torsion sensor made of a corrugated long period fiber grating. Meas. Sci. Technol. 2001, 12, 793–799. [Google Scholar] [CrossRef]
- Lu, C.; Jin, X.; Wang, S.; Xiang, Z.; Sun, C.; Chen, X.; Ma, Y.; Zhu, Q.; Tong, C.; Geng, T.; et al. High Torsion Sensitivity Sensor Based on LPFG With Unique Geometric Structure. IEEE Sens. J. 2021, 21, 6217–6223. [Google Scholar] [CrossRef]
- Saputro, J.; Kim, J.; Bae, M.; Lee, Y. Strain-Insensitive Simultaneous Measurements of Torsion and Temperature Using Long-Period Fiber Grating Inscribed on Twisted Double-Clad Fiber. IEEE Sens. J. 2023, 23, 6910–6918. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, M.; Li, Y.; Dai, Z.; Ma, Y.; Su, C.; Sun, W.; Geng, T. Highly Sensitive Torsion Sensor Based on Periodical Helix-Style Long Period Fiber Grating. IEEE Photonics Technol. Lett. 2022, 34, 1195–1198. [Google Scholar] [CrossRef]
- Kang, J.Y.; Liu, C.L.; Liu, Z.H. High sensitivity and directional recognition torsion sensor based on rotating distributed slot long-period fiber grating. Measurement 2025, 241, 115756. [Google Scholar] [CrossRef]
- Kang, J.; Dang, S.; Wang, X.; Ye, K.; Bai, Y.; Wang, Y.; Xia, L.; Du, C. High-Sensitivity LPFG Torsion Sensor Based on Indirect Torsion Slot. IEEE Sens. J. 2025, 25, 398–404. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Zhao, Y.; Wang, T. High Sensitivity Twist Sensor Based on Helical Long-Period Grating Written in Two-Mode Fiber. IEEE Photonics Technol. Lett. 2016, 28, 1629–1632. [Google Scholar] [CrossRef]
- Dai, L.; Lu, C.; Jiang, H.; Wang, Y.; Zeng, F.; Chen, X.; Sun, C.; Yan, Y.; Li, S.; Jin, X.; et al. A Fiber-Based Torsion Sensor with Tunable Sensitivity. IEEE Sens. J. 2023, 23, 24264–24270. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Zhu, Y.; Tang, Q.; Yu, Y.; Wang, L. Temperature and Twist Sensor Based on the Sagnac Interferometer with Long-Period Grating in Polarization-Maintaining Fiber. Sensors 2024, 24, 377. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Jiang, Y.; Hua, Z.; Mou, C.; Liu, Y.; He, Z. Helical Long-Period Gratings in Three-Core Fiber for Directional Curvature and Torsion Measurements. J. Light. Technol. 2024, 42, 6163–6170. [Google Scholar] [CrossRef]
- Zhu, C.; Tang, C.; Huang, S.; Qu, Z.; Zhao, Y.; Li, H. Cross-Sensitivity-Free Highly Sensitive Torsion and Strain Sensor Based on Concatenated DTP-Customizable Helical Fiber Gratings. IEEE Sens. J. 2023, 23, 27423–27430. [Google Scholar] [CrossRef]
- He, Y.; Ma, Y.; Jiang, C.; Liu, Y. Torsion Sensor Based on Helical Long-Period Grating Inscribed in the Etched Double Cladding Fiber. IEEE Sens. J. 2024, 24, 12441–12448. [Google Scholar] [CrossRef]
- Zhuo, Y.; Ma, P.; Jiao, P.; Yuan, X. Application of Long-Period Fiber Grating Sensors in Structural Health Monitoring: A Review. CivilEng 2024, 5, 559–575. [Google Scholar] [CrossRef]
- Ma, Y.; Su, C.; Dai, Z.; Tian, T.; Yang, X.; Geng, T.; Yuan, L. Sinusoidal-Core Long Period Fiber Grating for Refractive Index Measurement. J. Light. Technol. 2022, 40, 4903–4910. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; He, X.; Yuan, J.; Wu, Q.; Liu, B. Long-Period Fiber Grating Based on Side-Polished Optical Fiber and Its Sensing Application. IEEE Trans. Instrum. Meas. 2023, 72, 7001109. [Google Scholar] [CrossRef]
- Geng, T.; Zhang, S.; Peng, F.; Yang, W.; Sun, C.; Chen, X.; Zhou, Y.; Hu, Q.; Yuan, L. A Temperature-Insensitive Refractive Index Sensor Based on No-Core Fiber Embedded Long Period Grating. J. Light. Technol. 2017, 35, 5391–5396. [Google Scholar] [CrossRef]
- Yin, A.; Zhang, G.; Xu, W.; Zhao, Y.; Wu, B.; Cui, X.; Gao, Z.; Peng, F.; Yang, J. A Compact Refractive Index and Temperature Simultaneous Measurement Sensor Based on Coaxial Dual-Waveguide Fiber Embedded No-Core Fiber Structure. IEEE Sens. J. 2024, 24, 4488–4495. [Google Scholar] [CrossRef]
- Tian, T.; Li, Y.; Han, J.; Ma, Y.; Li, S.; Sun, W.; Geng, T. Compact refractive index sensor based on offset splicing long-period fiber grating. Sens. Actuators A Phys. 2024, 371, 115291. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X.; Bao, W.; Zhu, X.; An, X.; Peng, Q.; Ren, Z.; Yang, P.; Jiang, S.; Wu, G.; et al. Temperature and Strain Insensitive Refractometer Based on a Multimode Fiber Embedded in a Few-Mode Fiber Structure. IEEE Sens. J. 2024, 24, 34541–34548. [Google Scholar] [CrossRef]
- Du, C.; Wang, Q.; Cui, L.; Jia, B.; Qin, Z.; Zhang, L.; Deng, X. Seawater Salinity Sensor Based on Dual Resonance Peaks Long-Period Fiber Grating and Back Propagation Neural Network. IEEE Sens. J. 2023, 23, 24558–24567. [Google Scholar] [CrossRef]
- Chen, J.; Cui, S.; Zhang, S.; Liu, A. Refractive Index Sensors Based on a Chirped Core Long-Period Fiber Grating. IEEE Photonics Technol. Lett. 2024, 36, 771–774. [Google Scholar] [CrossRef]
- Wang, Y.; Rao, Y.; Ran, Z.; Zhu, T.; Zeng, X. Bend-insensitive long-period fiber grating sensors. Opt. Lasers Eng. 2004, 41, 233–239. [Google Scholar] [CrossRef]
- Wang, Y.; Rao, Y. A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously. IEEE Sens 2005, 5, 839–843. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Chen, L.; Zhang, Y.; Wang, S.; Yu, L.; Li, Y.; Geng, P.; Yan, T.; Li, X.; et al. Concave-lens-like long-period fiber grating bidirectional high-sensitivity bending sensor. Opt. Lett. 2017, 42, 3892–3895. [Google Scholar] [CrossRef]
- Lai, M.; Zhang, Y.; Zhang, W.; Gao, H.; Ma, L.; Ma, H.; Yan, T. Two-Axis Bending Sensor Based on Asymmetric Grid Long-Period Fiber Grating. IEEE Sens. J. 2022, 22, 10567–10575. [Google Scholar] [CrossRef]
- Zhao, Y.; Hua, Z.; Tang, M.; Peng, H.; Chen, S.; Ma, Y.; Liu, Y.; He, Z. Dual-dip long-period fiber gratings for directional bending measurement. Opt. Commun. 2023, 549, 129901. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, S.; Yang, W.; Geng, T.; Sun, W.; Sun, C.; Jin, X.; Yuan, L. Highly sensitive curvature sensor based on long period fiber grating with alternately splicing multiple single/multimode structure. Opt. Fiber Technol. 2017, 37, 69–73. [Google Scholar] [CrossRef]
- Zhang, S.; Deng, S.; Wang, Z.; Sun, C.; Chen, X.; Ma, Y.; Zhao, L.; Lu, C.; Geng, T.; Yang, W.; et al. A miniature SMS-LPG bending sensor with high sensitivity based on multimode fiber embedded-LPG. Sens. Actuators A Phys. 2019, 295, 31–36. [Google Scholar]
- Zhang, S.; Niu, H.; Cui, S.; Chen, J.; Shi, Q.; Zhang, B. Low-Temperature Crosstalk Bending Sensor with High Sensitivity Based on a Super-Structure Long-Period Fiber Grating. IEEE Sens. J. 2022, 22, 23975–23981. [Google Scholar] [CrossRef]
- Jin, X.; Xiang, Z.; Lu, C.; Zhang, S.; Rui, Z.; Yi, Y.; Xu, X.; Wang, J.; Sun, C.; Geng, T.; et al. Highly sensitive vector bending sensor based on an embedded multimode D-shaped LPFG. Opt. Express 2021, 29, 22813–22822. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Y.; Tian, T.; Tan, H.; Sun, C.; Geng, T.; Yuan, L. A Highly Sensitive Curvature Sensor Based on Omega-Shaped Long-Period Fiber Grating. IEEE Sens. J. 2023, 23, 8410–8415. [Google Scholar] [CrossRef]
- Xu, M.; Liu, J.; Abbas, L.; Zhou, A. High-sensitivity two-axis vector bending sensor based on side-grooved long period grating in eccentric core fiber. Opt. Laser Technol. 2022, 153, 108218. [Google Scholar] [CrossRef]
- Zhu, X.; Ren, Z.; Xu, Q.; Zhou, R.; Chen, H.; Ling, Q.; Wang, X.; Yu, Z.; Chen, D. Dual-core fiber-assemble long period fiber grating for vector bending sensing. Opt. Lasers Eng. 2025, 186, 108774. [Google Scholar] [CrossRef]
- Hu, C.; Guo, X.; Jiang, C.; Gao, J.; Li, L.; Deng, L.; Jiang, W.; Liu, C.; Sun, S. Long-period fiber grating based on micro-holes-filled PDMS for temperature and pressure measurement. Infrared Phys. Technol. 2024, 136, 105065. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.; Liu, Q.; Hu, Y.; Sun, X.; Duan, J. A low-frequency vibration acceleration sensor based on a long-period fiber grating and a double-clamped beam. Opt. Fiber Technol. 2023, 75, 103156. [Google Scholar] [CrossRef]
- Xia, F.; Zhao, Y.; Peng, Y. In-line microfiber MZI operating at two sides of the dispersion turning point for ultrasensitive RI and temperature measurement. Sens. Actuators A Phys. 2020, 301, 111754. [Google Scholar] [CrossRef]
- Zhu, C.; Huang, S.; Qu, Z.; Yuan, Y.; Cheng, T.; Zhao, Y. Ultralow-Duty-Cycle Amplitude-Sampled LPFG Using Deep Tapering and Its Application to Cross-Sensitivity-Free Multiparameter Sensor. J. Light. Technol. 2025, 43, 2321. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Y.; Zhang, W.; Kong, L.; Li, Z.; Gao, H.; Liao, T.; Zhang, J.; Ge, J.; Zhao, X.; et al. Simultaneous Measurement of Curvature Vector and Temperature Based on Composite Gratings Inscribed on D-Shaped Fiber. IEEE Sens. J. 2021, 21, 25758. [Google Scholar] [CrossRef]
- Du, C.; Wang, Q.; Zhao, S.; Deng, X. Biological sensors based on long period fiber grating. Opt. Laser Technol. 2023, 158, 108936. [Google Scholar] [CrossRef]
- Janczuk-Richter, M.; Gromadzka, B.; Richter, L.; Panasiuk, M.; Zimmer, K.; Mikulic, P.; Bock, W.; Mackowski, S.; Smietana, M.; Jónsson, J. Immunosensor Based on Long-Period Fiber Gratings for Detection of Viruses Causing Gastroenteritis. Sensors 2020, 20, 813. [Google Scholar] [CrossRef]
- Wang, R.; Ren, Z.; Kong, D.; Hu, B.; He, Z. Highly sensitive label-free biosensor based on graphene-oxide functionalized micro-tapered long period fiber grating. Opt. Mater. 2020, 109, 110253. [Google Scholar] [CrossRef]
- Yang, F.; Chang, T.; Liu, T.; Wu, D.; Du, H.; Liang, J.; Tian, F. Label-free detection of Staphylococcus aureus bacteria using SIO4 with functional polyelectrolyte coatings. Biosens. Bioelectron. 2019, 133, 147–153. [Google Scholar] [CrossRef]
- He, S.; Wang, J.; Yang, F.; Chang, T.; Tang, Z.; Liu, K.; Liu, S.; Tian, F.; Liang, J.; Du, H.; et al. Bacterial Detection and Differentiation of Staphylococcus aureus and Escherichia coli Utilizing Long-Period Fiber Gratings Functionalized with Nanoporous Coated Structures. Coatings 2023, 13, 778. [Google Scholar] [CrossRef]
- Wu, C. S-shaped long period fiber grating glucose concentration biosensor based on immobilized glucose oxidase. Optik 2020, 203, 163960. [Google Scholar] [CrossRef]
- Wen, H.; Wang, S.; Li, C.; Yeh, Y.; Chiang, C. Real-Time and Sensitive Immunosensor for Label-Free Detection of Specific Antigen with a Comb of Microchannel Long-Period Fiber Grating. Anal. Chem. 2020, 92, 15989–15996. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, L.; Tao, Z.; Li, Y.; Li, T.; Zhang, P.; Gan, N. Phage-modified dual-peak long-period fiber grating biosensor for ultrasensitive, rapid and specific detection of pathogen strains. Sens. Actuators B Chem. 2025, 423, 136729. [Google Scholar] [CrossRef]
- Wei, Y.; Xiang, H.; Liu, C.; Kang, J.; Tang, Y.; Ren, P.; Wang, X.; Liu, Z. Highly sensitive threaded LPFG strain sensor. Measurement 2025, 242, 116012. [Google Scholar] [CrossRef]
- Budinski, V.; Donlagic, D. Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review. Sensors 2017, 17, 443. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, W.; Wang, B.; Chen, L.; Bai, Z.; Gao, S.; Li, L.; Liu, J.; Zhang, L.; Zhou, Q.; et al. Simultaneous strain and temperature measurement by cascading few-mode fiber and single-mode fiber long-period fiber gratings. Appl. Opt. 2014, 53, 7045–7049. [Google Scholar] [CrossRef]
- Prashar, S.; Tiwari, U.; Singh, S. Fuel adulteration detection sensor using sensitivity-optimized etched long-period fiber grating. J. Opt. 2024, 53, 4532–4546. [Google Scholar] [CrossRef]













| Methods | Cladding Damage Susceptibility | Suitable Measured Physical | Costs | Mechanical Strength | Ref. |
|---|---|---|---|---|---|
| High-frequency CO2 laser inscription | High | Strain bending and torsion | Medium | Medium | [26,27] |
| Chemical etching | High | RI | Low | Medium | [31,34] |
| Arc discharging method | Medium | Bending Strain and RI | Low | Medium | [35,36] |
| Femtosecond laser writing | Low | Strain Torsion | High | High | [40,42] |
| Type | Range (με) | Sensitivity (pm/με) | Length (mm) | Ref. |
|---|---|---|---|---|
| S-LPFG (S-type) | 0–500 | 16.55 | 9.5 | [58] |
| IPS-LPGH (Incline Plane-Shaped) | 0–900 | 15.00 | 5.0 | [59] |
| D-LPFG (D-shaped) | 0–100 0–600 | 174.55 25.96 | 3.6 | [65] |
| MC-LPFG (multimode fiber chirped) | 0–1200 | −10.10 | 4.6 | [62] |
| V-LPFG (V-groove) | 0–100 | 229.10 | 15.0 | [66] |
| CD-LPFG (Core-Distortion) | 0–350 350–750 | −41.00 −23.00 | 5.0 | [68] |
| HSC-LPFG (Hook-Shaped Core) | 0–400 | −135.00 | 3.0 | [69] |
| CB-LPFG (Core-Bending) | 0–30 30–200 | 846.00 403.00 | 3.7 | [70] |
| Type | Range (rad/m) | Sensitivity nm (rad/m) | Dual-Twist Path | Ref. |
|---|---|---|---|---|
| V-LPFGs (V-groove) | ±10.5 | 0.399 | Structural Asymmetry | [73] |
| TDC-LPFGs (pre-twisting for double-clad) | ±9.69 | 0.467 | Helical Chirality | [74] |
| HS-LPFG (helix-style) | ±17.95 | 1.650 | Helical Chirality | [75] |
| IT-LPFGs (indirect torsion slot type) | ±6.54 | 1.288 | Structural Asymmetry | [76] |
| RD-LPFGs (residual stress breaking) | ±13.08 | 0.420 | Structural Asymmetry | [77] |
| TS-LPFGs (tunable sensitivity) | ±5.70 ±11.40 | 0.810 0.430 | Structural Asymmetry | [79] |
| TCF-HLPGs (three-core fiber) | ±7.98 | 0.480 | Differential Sensing | [81] |
| DTP- LPFGs (dispersion turning point) | ±4.2 | 2.731 | Differential Sensing | [82] |
| DCF-HLPGs (double-cladding fiber) | ±35.9 | 1.162 | Helical Chirality | [83] |
| Type | Range (RIU) | Sensitivity nm/RIU | Method | Ref. |
|---|---|---|---|---|
| SC-LPFGs (sinusoidal-core) | 1.33–1.42 | 620 | Reshaping Geometry | [85] |
| Dual Resonance Peaks LPFGs | 1.33–1.40 | 1304 | Direct Core Writing | [41] |
| SNS-LPFGs (SMF-NCF-SMF) | 1.33–1.40 | 142 | Heterogeneous Fiber Structures | [87] |
| CEN-LPFGs (embedding a coaxial dual-waveguide fiber structure within an NCF segment) | 1.33–1.41 | 278 | Heterogeneous Fiber Structures | [88] |
| TTMF-LPFGs (tapered two-mode fiber) | 1.33–1.42 | 1360 | Reshaping Geometry | [32] |
| OC-LPFGs (offset splicing) | 1.33–1.40 | −4461 | Reshaping Geometry | [89] |
| MFM-LPFGs (MMF-embedded structure) | 1.388–1.426 | 779 | Heterogeneous Fiber Structures | [90] |
| CC-LPFGs (chirped-core) | 1.33–1.42 | 637 | Heterogeneous Fiber Structures | [92] |
| Femtosecond Laser Inscribed LPFGs | 1.33–1.34 | −12,576 | Direct Core Writing | [86] |
| Type | Direction | Sensitive | Length | Bending Range | Ref. |
|---|---|---|---|---|---|
| υ-shaped LPFGs | ±Y | −24.08 nm/m−1 | 18.0 mm | 0.22–2.21 m−1 | [96] |
| DD-LPFGs (dual-dip) | +X −X | −35.91 nm/m−1 −20.74 dB/m−1 | 7.2 mm | 0.80–2.40 m−1 | [97] |
| SMS-LPFGs (SMF-MMF-SMF) | Isotropic | 31.47 nm/m−1 | 3.0 mm | 0–2.44 m−1 | [99] |
| SLPFGs (super-structured) | Isotropic | 17.24 dB/m−1 | 5.4 mm | 0–0.70 m−1 | [100] |
| EMD-LPFGs (embedded MMF design) | X ±Y | 70.21 nm/m−1 9.98 nm/m−1 | 2.5 mm | 0–0.88 m−1 | [101] |
| OS-LPFGs (Omega-shaped) | −Y ±X | −69.95 nm/m−1 −19.84 nm/m−1 | 1.5 mm | 0–1.50 m−1 | [102] |
| SG-LPFGs (side-grooved) | +X/−X +Y/−Y | 25.76 nm/m−1 16.83 nm/m−1 | 21.2 mm | 0–2.25 m−1 | [103] |
| A-LPFGs (assembled) | Isotropic | −43.93 nm/m−1 | 3.2 mm | 0.11–1.17 m−1 | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, T.; Ding, H.; Wang, F.; Li, Y.; Ma, Y. Structure-Modulated Long-Period Fiber Gratings: A Review. Photonics 2025, 12, 1097. https://doi.org/10.3390/photonics12111097
Du T, Ding H, Wang F, Li Y, Ma Y. Structure-Modulated Long-Period Fiber Gratings: A Review. Photonics. 2025; 12(11):1097. https://doi.org/10.3390/photonics12111097
Chicago/Turabian StyleDu, Tianyu, Hongwei Ding, Feng Wang, You Li, and Yiwei Ma. 2025. "Structure-Modulated Long-Period Fiber Gratings: A Review" Photonics 12, no. 11: 1097. https://doi.org/10.3390/photonics12111097
APA StyleDu, T., Ding, H., Wang, F., Li, Y., & Ma, Y. (2025). Structure-Modulated Long-Period Fiber Gratings: A Review. Photonics, 12(11), 1097. https://doi.org/10.3390/photonics12111097

