Optimization and Modeling of Optical Emission Spatial Coverage from Underwater Multi-Faceted Optical Base Stations
Abstract
:1. Introduction
2. The Underwater OBS Beam Emission Model
2.1. Angular Power Density of Source
2.2. OBS Beam Emission Model
2.3. Method for Modeling the Three-Dimensional Spatial Coverage of OBS Beams
3. MOPSO Optimization
Algorithm 1. The MOPSO algorithm pseudo-code. |
Initialize Randomly generate each particle’s velocity and position Evaluate the fitness value of each particle Fill the of each particle with its current position for = 1: MaxIt for = 1: N Update particle velocity Update particle position Update end for Add non-dominated particles to repository Keep non-dominated members in the repository if non-dominated particles number > archive size Updating the elite solution set, delete the extra repository members end if end for |
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schill, F.; Bahr, A.; Martinoli, A. Vertex: A new distributed underwater robotic platform for environmental monitoring. In Distributed Autonomous Robotic Systems: The 13th International Symposium; Springer: Cham, Switzerland, 2018; pp. 679–693. [Google Scholar] [CrossRef]
- González-García, J.; Gómez-Espinosa, A.; Cuan-Urquizo, E.; García-Valdovinos, L.G.; Salgado-Jiménez, T.; Escobedo Cabello, J.A. Autonomous underwater vehicles: Localization, navigation, and communication for collaborative missions. Appl. Sci. 2020, 10, 1256. [Google Scholar] [CrossRef]
- Hoeher, P.A.; Sticklus, J.; Harlakin, A. Underwater optical wireless communications in swarm robotics: A tutorial. IEEE Commun. Surv. Tutor. 2021, 23, 2630–2659. [Google Scholar] [CrossRef]
- Connor, J.; Champion, B.; Joordens, M.A. Current algorithms, communication methods and designs for underwater swarm robotics: A review. IEEE Sens. J. 2020, 21, 153–169. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Underwater optical wireless communication. IEEE Access 2016, 4, 1518–1547. [Google Scholar] [CrossRef]
- Saeed, N.; Celik, A.; Al-Naffouri, T.Y.; Alouini, M.-S. Underwater optical wireless communications, networking, and localization: A survey. Ad Hoc Netw. 2019, 94, 101935. [Google Scholar] [CrossRef]
- Pontbriand, C.; Farr, N.; Hansen, J.; Kinsey, J.C.; Pelletier, L.-P.; Ware, J.; Fourie, D. Wireless data harvesting using the AUV Sentry and WHOI optical modem. In Proceedings of the OCEANS 2015-MTS/IEEE Washington, Washington, DC, USA, 19–22 October 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Sabril, S.; Jasman, F.; Hassan, W.H.W.; Mutalip, Z.A.; Mohd-Mokhtar, R.; Hassan, Z. The Effect of Medium Inhomogeneity in Modeling Underwater Optical Wireless Communication. J. Commun. 2021, 16, 386–393. [Google Scholar] [CrossRef]
- Lv, Z.; He, G.; Qiu, C.; Liu, Z. Investigation of underwater wireless optical communications links with surface currents and tides for oceanic signal transmission. IEEE Photonics J. 2021, 13, 1–8. [Google Scholar] [CrossRef]
- Nasser, A.G.; Ali, M.A.A. Performance of LED for line-of-sight (LoS) underwater wireless optical communication system. J. Opt. Commun. 2024, 44, s1355–s1363. [Google Scholar] [CrossRef]
- Yang, X.; Tong, Z.; Zhang, H.; Zhang, Y.; Dai, Y.; Zhang, C.; Chen, X.; Xu, J. 7-M/130-Mbps LED-to-LED underwater wireless optical communication based on arrays of series-connected LEDs and a coaxial lens group. J. Light. Technol. 2022, 40, 5901–5909. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, M.; Wang, X.; Ren, X. Design and implementation of more than 50m real-time underwater wireless optical communication system. J. Light. Technol. 2022, 40, 3654–3668. [Google Scholar] [CrossRef]
- Wang, L.; Qi, Z.; Liu, P.; Hu, F.; Li, J.; Wang, Y. Underwater wireless video communication using blue light. J. Light. Technol. 2023, 41, 5951–5957. [Google Scholar] [CrossRef]
- Wang, P.; Li, C.; Xu, Z. A cost-efficient real-time 25 Mb/s system for LED-UOWC: Design, channel coding, FPGA implementation, and characterization. J. Light. Technol. 2018, 36, 2627–2637. [Google Scholar] [CrossRef]
- Li, J.; Yang, B.; Ye, D.; Wang, L.; Fu, K.; Piao, J.; Wang, Y. A real-time, full-duplex system for underwater wireless optical communication: Hardware structure and optical link model. IEEE Access 2020, 8, 109372–109387. [Google Scholar] [CrossRef]
- Han, B.; Zhao, W.; Zheng, Y.; Meng, J.; Wang, T.; Han, Y.; Wang, W.; Su, Y.; Duan, T.; Xie, X. Experimental demonstration of quasi-omni-directional transmitter for underwater wireless optical communication based on blue LED array and freeform lens. Opt. Commun. 2019, 434, 184–190. [Google Scholar] [CrossRef]
- Williams, A.J.; Laycock, L.L.; Griffith, M.S.; McCarthy, A.G.; Rowe, D.P. Acquisition and tracking for underwater optical communications. In Proceedings of the Advanced Free-Space Optical Communication Techniques and Applications III, Warsaw, Poland, 11–14 September 2017; pp. 44–54. [Google Scholar] [CrossRef]
- McRaven, C.; Pelletier, L.-P.; Ware, J.; Gardner, A.; Farr, N.; Collins, J.; Purcell, M. Wireless retrieval of high-rate ocean bottom seismograph data and time synchronization using the WHOI optical modem and REMUS AUV. In Proceedings of the OCEANS 2019-Marseille, Marseille, France, 17–20 June 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Barroso, A.R.F.; Baiden, G.; Johnson, J. Teleoperation of mining equipment using optical wireless communications. In Proceedings of the 2015 Seventh International Conference on Ubiquitous and Future Networks, Sapporo, Japan, 7–10 July 2015; pp. 727–733. [Google Scholar] [CrossRef]
- Tong, Z.; Yang, X.; Chen, X.; Zhang, H.; Zhang, Y.; Zou, H.; Zhao, L.; Xu, J. Quasi-omnidirectional transmitter for underwater wireless optical communication systems using a prismatic array of three high-power blue LED modules. Opt. Express 2021, 29, 20262–20274. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Tong, Z.; Yang, X.; Zhang, Y.; Zhang, C.; Xu, J. Omnidirectional optical communication system designed for underwater swarm robotics. Opt. Express 2023, 31, 18630–18644. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Ling, Y. New approach for designing an underwater free-space optical communication system. Front. Mar. Sci. 2022, 9, 971559. [Google Scholar] [CrossRef]
- Doniec, M.; Angermann, M.; Rus, D. An end-to-end signal strength model for underwater optical communications. IEEE J. Ocean. Eng. 2013, 38, 743–757. [Google Scholar] [CrossRef]
- Moreno, I.; Sun, C.-C.; Ivanov, R. Far-field condition for light-emitting diode arrays. Appl. Opt. 2009, 48, 1190–1197. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 256–279. [Google Scholar] [CrossRef]
- Yuksel, M.; Akella, J.; Kalyanaraman, S.; Dutta, P. Free-space-optical mobile ad hoc networks: Auto-configurable building blocks. Wirel. Netw. 2009, 15, 295–312. [Google Scholar] [CrossRef]
- Huang, Q.; Wen, W.; Liu, M.; Du, P.; Chen, C. Energy-Efficient Unmanned Aerial Vehicle-Aided Visible Light Communication with an Angle Diversity Transmitter for Joint Emergency Illumination and Communication. Sensors 2023, 23, 7886. [Google Scholar] [CrossRef]
Parameters | Symbol | Value |
---|---|---|
Number of LEDs in an LED array | 10 | |
Refractive index of air | 1 | |
Refractive index of glass | 1.5 | |
Refractive index of water | 1.33 | |
Diameter of the receiving aperture | d | 50 mm |
Minimum light intensity reception threshold | E | −41 dBm |
Attenuation coefficient of pure seawater | 0.056 m−1 | |
Attenuation coefficient of clear seawater | 0.151 m−1 | |
Maximum number of iterations | 50 | |
Population size of particles | 20 | |
Archive size | 8 | |
Inertia weight coefficient | 0.9 |
(°) | (°) | Transmission Distribution Standard Deviation | Spatial Coverage Volume of the Beam (m3) |
---|---|---|---|
80 | 57 | 0.2657 | 15,487 |
66 | 60 | 0.4995 | 18,393 |
59 | 61 | 0.6881 | 20,427 |
52 | 59 | 0.9746 | 22,543 |
47 | 58 | 1.2329 | 24,495 |
41 | 59 | 1.6900 | 27,597 |
32 | 60 | 2.7345 | 32,850 |
21 | 59 | 5.3526 | 37,041 |
(°) | (°) | Transmission Distribution Standard Deviation | Spatial Coverage Volume of the Beam (m3) |
---|---|---|---|
80 | 57 | 0.1569 | 4321 |
71 | 63 | 0.2546 | 4742 |
61 | 61 | 0.3536 | 5280 |
53 | 61 | 0.4664 | 5780 |
46 | 60 | 0.6181 | 6298 |
42 | 62 | 0.8143 | 6751 |
31 | 65 | 1.4720 | 7767 |
22 | 61 | 2.5466 | 8269 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Ma, C.; Tian, X.; Guo, H.; Ao, J. Optimization and Modeling of Optical Emission Spatial Coverage from Underwater Multi-Faceted Optical Base Stations. Photonics 2025, 12, 4. https://doi.org/10.3390/photonics12010004
Shi J, Ma C, Tian X, Guo H, Ao J. Optimization and Modeling of Optical Emission Spatial Coverage from Underwater Multi-Faceted Optical Base Stations. Photonics. 2025; 12(1):4. https://doi.org/10.3390/photonics12010004
Chicago/Turabian StyleShi, Junjie, Chunbo Ma, Xu Tian, Hanjun Guo, and Jun Ao. 2025. "Optimization and Modeling of Optical Emission Spatial Coverage from Underwater Multi-Faceted Optical Base Stations" Photonics 12, no. 1: 4. https://doi.org/10.3390/photonics12010004
APA StyleShi, J., Ma, C., Tian, X., Guo, H., & Ao, J. (2025). Optimization and Modeling of Optical Emission Spatial Coverage from Underwater Multi-Faceted Optical Base Stations. Photonics, 12(1), 4. https://doi.org/10.3390/photonics12010004